
EUROGRAPHICS 2002 STAR – State of The Art Report

Feature Extraction and Visualisation of Flow Fields

Frits H. Post, Benjamin Vrolijk and Helwig Hauser, Robert S. Laramee, Helmut Doleisch
{F.H.Post,B.Vrolijk}@its.tudelft.nl {Hauser,Laramee,Doleisch}@vrvis.at

Delft University of Technology, The Netherlands VRVis Research Center, Austria
http://visualisation.tudelft.nl/ http://www.vrvis.at/

Abstract

Flow visualisation has already been a very attractive part of visualisation research for a long time. Usually very
large data sets need to be processed, which often consist of multivariate data with a large number of sample
locations, often arranged in multiple time steps. Recently, the steadily increasing performance of computers again
has become a driving factor for a new boom in flow visualisation, especially in techniques based on feature
extraction, vector field clustering, and topology extraction.
In this state-of-the-art report, an attempt was made to (1) provide a useful categorisation of FlowVis solutions,
(2) give an overview of existing solutions, and (3) focus on recent work, especially in the field of feature extraction.
In separate sections we describe (a) direct visualisation techniques such as hedgehog plots, (b) visualisation
using integral objects, such as streamlines, (c) texture-based techniques, including spot noise and line integral
convolution, and (d) techniques based on extraction of features or flow topology.

Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualisation, flow visuali-
sation, computational flow visualisation

1. Introduction

Computers have become increasingly important in many as-
pects of society — in science, business and economics, ed-
ucation and politics, as well as in many other fields, com-
puters are used to acquire, store, process, and communicate
data, not in the least to users. Visualisation, as a separate field
of research and development in computer science, addresses
exactly this bridge between data and user: visualisation so-
lutions help users to explore, analyse, and present their data.

In flow visualisation (FlowVis) — one of the traditional
subfields of visualisation — a rich variety of application
fields is given, form the automotive industry, aerodynam-
ics, turbomachinery design, weather simulation and mete-
orology, climate modelling, ground water flow, medical ap-
plications, etc., with significantly different characteristics re-
lating to the data and user goals. Consequently, the spectrum
of FlowVis solutions is very rich, spanning multiple dimen-
sions of technical aspects, e.g., 2D vs. 3D solutions, tech-
niques for steady and time-dependent data, et cetera.

1.1. Aspects of Flow Visualisation

Bringing many of those solutions in a linear order (as neces-
sary for a text like this), is not at all easy or intuitive. Several
options of subdividing this broad field of literature are pos-
sible. Hesselink et al., for example, addressed the difficult
problem of how to categorise FlowVis techniques in their
1994 overview of (at that time) recent research issues 33. In
the following subsections several of those aspects are dis-
cussed on a higher level, before literature is addressed di-
rectly later.

Direct vs. integration-based vs. feature-based flow
visualisation

According to the different needs of the users there are differ-
ent approaches to flow visualisation (cf. Figure 1c). One is to
do direct flow visualisation by using an as direct as possible
translation of the flow data into visualisation cues, such as by
drawing arrows. FlowVis solutions of this kind allow imme-
diate investigation of the flow data, without a lot of mental
translation effort.

For a better communication of the long-term behaviour in-
duced by flow dynamics, integration-based approaches first
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Figure 1: Direct flow visualisation (a) vs. FlowVis based on
flow integration (b) vs. FlowVis based on derived data such
as flow features or flow topology (c). This classification re-
lates to the first-level structure of this report.

integrate the flow data and use resulting integral objects as
basis for visualisation, e.g., using streamlines for visualisa-
tion.

Another approach for visualising flow data is the feature-
based approach, in which an abstraction step is performed
first. From the original data set, interesting objects are ex-
tracted, such as important phenomena or topological infor-
mation of the flow. These flow features are an abstraction of
the data, and can be visualised efficiently and without the
original data. Because the original data is not needed any-
more, a huge data reduction is achieved, of a factor 1000
or more. This makes this approach very suitable for large
(time-dependent) data sets, originating from computational
fluid dynamics simulations. These data sets are simply too
large to visualise directly, and therefore, a lot of time is re-
quired in preprocessing, for computing the features (feature
extraction). But once this preprocessing has been performed,
visualisation can be done very quickly.

In this overview we use separate chapters for the afore-
mentioned classes of approaches: direct flow visualisation
is discussed in Section 2, integration-based FlowVis in Sec-
tions 3 and 4, and feature-based FlowVis is described in Sec-
tions 5 through 8. Figure 1 illustrates the difference between
the aforementioned classes — note the increasing amount of
computation spent within the visualisation step when chang-
ing from direct FlowVis (a) to feature-based FlowVis (c).

Spatial dimensions vs. time

In flow visualisation, available solutions significantly differ
with respect to the given dimensionality of the flow data.
Techniques which are useful for 2D data, like colour cod-
ing or arrow plots, sometimes lack similar advantages in 3D.
Also, the question, whether the flow data is steady or time-
dependent, usually makes a big difference with respect to the
FlowVis solution of choice.

In this state-of-the-art report, we (at least partially) sub-
structure the sections about different classes of FlowVis so-
lutions into subsections with respect to different spatial di-
mensions involved. Although there are lots of interesting
works about 1D FlowVis as well as nD FlowVis (with n > 3),

this report clearly focuses on two and three spatial dimen-
sions.

Below, the top-level sections start with a subsection on 2D
FlowVis techniques (Sections n.1), i.e., covering solutions
which focus on 2D flow data (in 2D domains). Since the
2D domain inherently corresponds to the 2D screen, good
overviews are possible for these kinds of techniques like
with the use of 2D LIC (see below for details). However, the
reader should be aware, that real-world flows (at least when
talking about fluids or gases) are rarely two-dimensional —
data sets therefore are often slices out of a stack of those, or
stem from simplifications of the underlying model.

A second subsection (Sections n.2) discusses FlowVis so-
lutions for boundary flows or sectional subsets of 3D flows,
for example, flow data on planar cross sections. This subsec-
tion therefore deals with 2D flow data, at least with respect to
the local dimensionality of the data, but which is embedded
within 3D space. Whereas boundary flows often are primar-
ily interesting to the user anyway (for example in aerospace
design), the visualisation of sectional subsets of 3D flow usu-
ally needs special care (not at the least because of the usually
missing third flow component). Especially the use of integral
curves across flow cross sections is questionable as the sug-
gested particle paths (in general) do not correspond to actual
flow trajectories which naturally extend to 3D in this case.

Finally, a third subsection (Sections n.3) discusses truly
3D FlowVis solutions, i.e., visualisation techniques, which
apply to true 3D flow data. With true 3D FlowVis, rendering
becomes a central issue — in many cases compromises are
needed, trading visibility for completeness. Solutions range
from clipping and opacity modulations to feature-based se-
lections.

In addition to the spatial dimensions as addressed above,
also dimensionality with respect to time is of great impor-
tance in flow visualisation. First of all, flow data itself in-
corporates a notion of time — flows often are interpreted as
differential data with respect to time, i.e., when integrating
the data, paths of moving entities are obtained. Additionally,
the flow itself can change over time (like in turbulent flows,
for example), resulting in time-dependent or unsteady data.
In this case, two dimensions of time are present and the vi-
sualisation must carefully distinguish between both in order
to prevent the user from being confused. This is especially
true, when animation should be used for flow visualisation.
Then, even a third temporal dimension can show up in a vi-
sualisation, requiring special care to avoid confusion along
with interpretation of the animations.

Although the distinction between steady and unsteady
flows could open another dimension when sorting FlowVis
literature, in this report solutions for time-dependent data are
put beside related techniques for steady data.
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Computational vs. experimental and empirical FlowVis

Flow visualisation, as discussed in this literature overview,
is considered to be equivalent to what others call compu-
tational flow visualisation — just to distinguish it from the
large and old fields of experimental and empirical flow visu-
alisation.

Although we do not have space to also focus on those
other variants of FlowVis, it is interesting to recognise that
many computational FlowVis solutions more or less mimic
the visual appearance of well-accepted techniques in exper-
imental visualisation (cf. particle traces, dye injection, et
cetera).

Data from simulation vs. measurements or models

Computational FlowVis, in general, deals with data that ex-
hibit temporal dynamics such as results from flow simulation
(e.g., the simulation of fluid flow through a turbine), flow
measurements (possibly acquired through laser-based tech-
nology), or analytic models of flows (e.g., dynamical sys-
tems, given as set of differential equations).

In this report we mainly focus on flow visualisation deal-
ing with data from flow simulation, i.e., flow data given as a
set of samples on some kind of grid, whereas solutions for
data from flow measurements or flow modelling are only ad-
dressed in less detail. Technical issues frequently arise due to
the combination of extremely large data sets and demanding
user requirements such as interactive visualisation of time-
dependent data. Therefore, solutions in the field of parallel
computing 11, 60, 138, 170, out-of-core rendering 147, and render-
ing of compressed data 166 are often discussed in the FlowVis
literature.

Placement and interaction

Many FlowVis solutions build on the use of individual visu-
alisation objects, for example, streamlines. For at least three
reasons, the placement of those visualisation cues is an is-
sue within FlowVis literature: (1) when using integral ob-
jects such as streamlines, an even distribution of seed loca-
tions usually does not result in an even distribution of in-
tegral objects — separate algorithms need to be employed;
(2) when dealing with 3D flow data, occlusion and/or vi-
sualisation complexity raises special challenges — dense
placement often results in severe cluttering within rendered
images; (3) when using feature-based strategies, placement
needs to be coupled (and aligned) with the feature extraction
parts of the visualisation.

In addition to placement, user interaction plays an im-
portant role, especially in case of flow analysis. Users re-
quire systems which allow (1) navigation, including zoom-
ing, panning, etc., (2) interactive placement of visualisation
cues, for example, using an interactive rake for streamline
seeding, as well as other means to influence the visualisa-
tion, or even (3) options of interacting with the flow data, for
example, through steering.

Last but not least human-computer interaction challenges
present themselves throughout flow visualisation research,
especially in the categories of perception in 3D, and inter-
action. For there is strong evidence that both 3D visualisa-
tion 154 and interaction 34 are very important components for
the user in understanding the data.

1.2. FlowVis Fundamentals

Before outlining some of the most important FlowVis tech-
niques in the main part of this paper, a short overview about
the common mathematical background as well as some gen-
eral concepts with regard to the computation of FlowVis re-
sults are discussed.

Flow data

An inherent characteristic of flow data is that derivative in-
formation is given with respect to time, which is laid out
across an n-dimensional domain Ω ⊂ Rn, for example, for
representing 3D fluid flow (n = 3). In the case of multidi-
mensional flow data (n > 1), temporal derivatives v of nD lo-
cations p within the flow domain Ω are n-dimensional vec-
tors:

v = dp/d t, p ∈ Ω ⊆ Rn, v ∈ Rn, t ∈ R (1)

In analytic models (like dynamical systems), vectors v of-
ten are described as functions of the respective spatial loca-
tions p, say like v = Ap for steady linear flow data if A is
a constant n×n-matrix. A general formulation of (possibly
unsteady, i.e., time-dependent) flow data v would be

v(p, t) : Ω×Π → Rn (2)

where p∈Ω⊂Rn represents the spatial reference of the flow
and t ∈ Π ⊂ R represents the system time. If t is considered
to be constant, i.e., for steady flow data, the more simple case
of v(p) : Ω → Rn is given.

In cases of results from nD flow simulation, like in auto-
motive applications or airplane design, vector data v usually
is not given in analytic form, but needs to be reconstructed
from the (discrete) simulation output. As usually numerical
methods are used to actually do the flow simulation such as
finite element methods. The output of flow simulation usu-
ally is a large-sized grid of many sample vectors vi,t , which
discretely represent the solution of the simulation process
(at time steps t). For further procedure, it is assumed that the
flow simulation was based on an (at least locally) continuous
model of the flow, thus allowing for continuous reconstruc-
tion of the flow data v during visualisation. One option for
doing so would be to apply a reconstruction filter h : Rn → R
to compute v(p, t) = ∑i h(p− pi)vi,t . As — for practical
reasons — filter h usually has only local extent (around
the origin), efficient procedures for finding those flow sam-
ples vi,t , which are nearest to the query point p, are needed
to do proper reconstruction.
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Grids

In flow simulation, the vector samples vi,t usually are laid
out across the flow domain according to a certain type of
grid. Grid types range from simple Cartesian grids over
curvilinear grids to complex unstructured grids. Typically,
simulation grids also exhibit large variations in cell sizes.
This variety of grids stems from the high influence of grid
design onto the flow simulation process and the thereby de-
rived need to model the flow grid as optimal as possible with
respect to the simulation in mind.

Although the principal theory of function reconstruction
from discrete samples does not exhibit too many differences
with respect to grid types involved, the practical handling
does. While neighbour searching might be trivial in a Carte-
sian grid, it usually is not in a tetrahedral grid. Similar differ-
ences are given for the problems of point location and vector
reconstruction. In the following we shortly describe several
fundamental operations which form the basis for FlowVis
computations on simulation grids.

Starting with point location, i.e., the problem of finding
the grid cell which a given nD-point lies in, usually two
cases are distinguished. For the general point location prob-
lem special data structures can be used which subdivide the
spatial domain to speed up the search. The second case of
iterative point location, which often is needed during inte-
gral curve computation, usually allows for quite efficient al-
gorithms due to exploitation of spatial coherence. One kind
of algorithm starts with an initial guess for the target cell,
checks for containment then and refining accordingly after-
wards. This process is iterated until the target cell is found.
More details can be found in older texts about flow visuali-
sation fundamentals 129, 95.

Beside point location, flow reconstruction within a cell of
the flow data set is a crucial issue in flow visualisation. Of-
ten, once the cell which contains the query location is found,
only the sample vectors at the cell’s vertices are considered
for flow reconstruction. The most often used approach is
first-order reconstruction by performing linear interpolations
within the cell. Within a hexahedral cell in 3D, for example,
trilinear flow reconstruction can be used.

Using point location and flow reconstruction, flow visu-
alisation can already start: vectors can be represented (for
example, by arrows), virtual particles can be injected and
traced across the flow domain. Nevertheless, the computa-
tion of derived data might be necessary to do more sophis-
ticated FlowVis. Usually, the first step is to request (second-
order) gradient information for arbitrary points in the flow
domain, i.e., ∇v|p , which gives information about local
properties of the flow (at point p) such as flow convergence
and divergence, flow rotation and shear, et cetera. For fea-
ture extraction, also flow vorticity ω = ∇×v can be of high
interest. Further details about local flow properties can be
found in previous work 96, 77.

Flow integration

Recalling that flow data in most cases is derivative informa-
tion with respect to time the idea of integrating flow data
over time is natural to provide an intuitive notion of (long-
term) evolution induced by the flow data. An example would
be flow visualisation by the use of particle advection. A re-
spective particle path p(s) — here through unsteady flow —
would be defined by

p(s) = p0 +
� s

τ=0
v(p(τ), τ + t0)dτ (3)

where p0 represents the seed location of the particle path and
t0 equals the time when the particle was seeded. Note, that
Equations 2 and 3 are more or less complimentary to each
other. For other types of integral curves such as streamlines,
streaklines, etc., refer to later parts of this text or previous
works 129, 61.

In addition to the theoretical specification of integral
curves, it is important to note, that respective integral equa-
tions like Equation 3 usually cannot be resolved for the
curve function analytically, and thereby numerical integra-
tion methods need to be employed. The most simple ap-
proach is to use a first-order Euler method to compute an
approximation pE — one iteration of the curve integration is
specified as by

pE(t + ∆ t) = p(t)+ ∆ t v(p(t), t) (4)

where ∆ t usually is a very small step in time and p(t) de-
notes the location to start this Euler step from. A more
accurate but also more costly technique is the second-
order Runge-Kutta method, which uses the Euler approxi-
mation pE as a look-ahead to compute a better approxima-
tion pRK2 of the integral curve:

pRK2(t + ∆ t) =

p(t)+ ∆ t · (v(p(t), t)+ v(pE(t + ∆ t), t))/2 (5)

Higher-order methods like the often used fourth-order
Runge-Kutta integrator utilise more such steps to better ap-
proximate the local behaviour of the integral curve. Also,
adaptive step sizes are used to make smaller steps in regions
where lots of changes take place in the flow.

In the following, four classes of approaches in the field
of flow visualisation are discussed — direct flow visuali-
sation is described in Section 2, texture-based FlowVis in
Section 3, geometric FlowVis is discussed in Section 4 and
finally, feature-based flow visualisation is described in Sec-
tions 5 through 8.

2. Direct flow visualisation

Direct, or global, flow visualisation techniques attempt to
present the complete data set, or a large subset of it, at a
low level of abstraction. The mapping of the data to a vi-
sual representation is direct, without complex conversion or
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Figure 2: Examples of direct flow visualisation — an interactive slicing probe with coloured slices and scalar clipping (left) 122;
direct volume rendering based on resampling (middle) 160; texture-based, coloured spot noise (right) 65.

extraction steps. These techniques are perhaps the most in-
tuitive visualisation strategies as they present the data as is.
Difficulties arise, when the long-term behaviour induced by
flow data is investigated, if direct FlowVis is used — this
may require cognitive integration of visualisation results.

2.1. Direct FlowVis in 2D

In this subsection we shortly address widely distributed,
standard techniques for 2D FlowVis, i.e., colouring and ar-
row plots.

Colour coding in 2D

A common direct flow visualisation technique is to map flow
attributes such as velocity, pressure, or temperature to colour.
Since colour plots are widely distributed, this approach re-
sults in very intuitive depictions. Of course, the colour scale
which is used for mapping must be chosen carefully with
respect to perceptual differentiation.

Colour coding for 2D FlowVis extends to time-dependent
data very well, resulting in moving colour plots according to
changes of the flow properties over time.

Arrow plots in 2D

A natural vector visualisation technique is to map a line,
arrow, or glyph to each sample point in the field, oriented
according to the flow field, as in Figure 6 (left). Usually
a regular placement of arrows is used in 2D, for example,
on an evenly-spaced Cartesian grid. Two variants of arrow
plots are often used: (1) normalised arrows of unit length
which visualise the direction of the flow only and (2) arrows
of varying length that is proportional to the flow velocity.
Klassen and Harrington 59 and Schroeder et al. 121 call this
technique a hedgehog visualisation (because of the bristly
result).

2D hedgehog plots can be extended to time-dependent
data, although bigger time steps might result in jumping ar-
rows, diminishing the quality of such a visualisation.

Hybrid direct FlowVis in 2D

Kirby et al. propose simultaneous visualisation of multiple
values (of 2D flow data) by using a layering concept related
to the painting process of artists 57. Arrow plots are mixed
with colour coding to provide visualisation results rich of
information.

2.2. Direct FlowVis on slices or boundaries

When dealing with 3D flow data, visualisation naturally
faces additional challenges such as 3D rendering. Acting as
a middle ground between 2D FlowVis and the visualisation
of truly 3D flow data is the restriction to subdimensional
parts of the 3D domain, e.g., sectional slices or boundary sur-
faces. Thereby, techniques known from 2D FlowVis usually
are applicable without major changes (at least from a techni-
cal point of view). When working with sectional slices, the
treatment of flow components orthogonal to slices requires
some special care.

Colour coding on slices or boundaries

Colour coding is very effective for visualising boundary
flows or sectional subsets of 3D flow data. A good exam-
ple is NASA’s Field Encapsulation Library 85, which allows
to easily use both techniques for various flow data.

Schulz et al. also use colour coding of scalars on 2D
slices in 3D automotive simulation data 122 as shown in
Figure 2 (left). They introduce an interactive slicing probe
which maps the vector field data to hue.

The use of scalar clipping, i.e., the transparent rendering
of slice regions where the corresponding data value does
not lie within a specific data range, allows to use multiple
(coloured) slices with reduced problems due to occlusion.

2D arrows on slices or boundary surfaces

Using 2D arrows on slices from 3D flow data is also an ef-
fective visualisation technique 19. However, results of such
a visualisation should be interpreted carefully, as flow com-
ponents which are orthogonal to the slice are usually not de-
picted.
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Above mentioned difficulties with 2D arrows and sec-
tional slices through 3D flow are basically negligible, when
talking about boundary surfaces, since in these cases, rarely
cross-boundary flows are given. Therefore the use of arrows
spread out over boundary surfaces usually is very effective,
as used by Treinish for weather visualisation 145.

2.3. Direct FlowVis in 3D

After discussing direct FlowVis on slices and boundary sur-
faces, direct FlowVis of real 3D flows is discussed in this
subsection. In contrast to previously mentioned techniques,
here rendering becomes the most critical issue. Occlusion
and complexity make it difficult (if possible at all) to get an
immediate overview of an entire flow data set in 3D.

Volume rendering for 3D FlowVis

The natural extension of colour coding in 2D (or on slices,
etc.) is colour coding in 3D. This, however, poses special
requirements onto rendering due to occlusion problems and
nontrivial complexity — volume rendering is needed. Vol-
ume rendering is well-known in the field of medical 3D vi-
sualisation, i.e., volume visualisation. However, those chal-
lenges, which closely correspond to flow visualisation are
briefly addressed here: (1) flow data sets are often sig-
nificantly smoother than medical data — an absence of
sharp and clear “object” boundaries (like organ boundaries)
makes mapping to opacities more difficult and less intuitive.
(2) flow data is often given on non-Cartesian grids, e.g., on
curvilinear grids — the complexity of volume rendering gets
significantly more tricky on those kinds of grids, starting
with nontrivial solutions required for visibility sorting and
blending. (3) flow data is also time-dependent in many cases,
imposing additional loads on the rendering process.

In the early nineties, Crawfis et al. 15, as well as Ebert et
al. 18 applied volume rendering techniques to vector fields.
Little later, Frühauf applied ray casting to vector fields 22.
Recently, Westermann, presented a relatively fast 3D volume
rendering method using a resampling technique for vector
field data from unstructured to Cartesian grids 160. A result
from this technique is illustrated in Figure 2 (middle).

Recently, Clyne and Dennis 14 as well as Glau 24 presented
volume rendering for time-varying vector fields using algo-
rithms which make special use of graphics hardware. Ono et
al. use direct volume rendering to visualise thermal flows in
the passenger compartment of an automobile 90. Their goal
is to attain the ability to predict the thermal characteristics
of the automotive cabin through simulation. Swan et al. ap-
ply direct volume rendering techniques in flow visualisation
in a system that supports computational steering 137. Their
visualisation results are extended to the CAVE environment.

Recently, Ebert and Rheingans demonstrated the use of
nonphotorealistic volume rendering techniques for 3D flow
data 17. They apply, for example, silhouette enhancement or
tone shading to improve renderings of 3D flows.

Arrow plots in 3D

The use of arrows for direct 3D FlowVis poses at least two
problems: (1) the position and orientation of a vector is of-
ten difficult to understand because of its projection onto a 2D
screen — using 3D representations of arrows (like a cylin-
der plus a cone) decreases these problems with perception
and (2) glyphs occluding one another become a problem —
careful seeding is required (in contrast to the default of dense
distributions).

In actual applications, arrow plots are usually based on
selective seeding, for example, all arrows starting from one
out of a few sectional slices through the 3D flow.

Boring and Pang address the problem of clutter in 3D di-
rect FlowVis by highlighting those parts of a 3D arrow plot,
which point in a similar direction compared to a user-defined
direction 8. Their methodology reduces the amount of data
being displayed thus results in less clutter. Their methods
can be combined with other techniques that use glyph rep-
resentations and flow geometries such as streamlines for
FlowVis. They apply the methods to both analytic and sim-
ulation data sets to highlight flow reversals.

3. Texture-based Visualisation

We make a distinction between geometric flow visualisation
(see Section 4) and dense, texture-based flow visualisation,
however, these two topics are closely coupled: conceptually,
the path from using geometric objects to texture-based vi-
sualisation is obtained via a dense seeding strategy. That is,
densely seeded geometric objects result in an image similar
to that obtained by dense, texture-based techniques. Like-
wise, the path from dense, texture-based visualisation to vi-
sualisation using geometric objects is obtained using some-
thing such as a sparse texture for texture advection.

Texture-based techniques in flow visualisation can pro-
vide dense spatial resolution images. Texture-based algo-
rithms are effective, versatile, and applicable to a wide spec-
trum of applications. Sanna et al. present a summary of this
research in a survey paper 117.

3.1. Texture-based FlowVis in 2D

In this subsection, we describe texture-based FlowVis solu-
tions for 2D flow data, i.e., spot noise, line integral convolu-
tion (LIC), and related approaches.

Spot noise in 2D

Spot noise, introduced by Van Wijk 162, was amongst the first
texture-based techniques for vector field visualisation. Spot
noise generates a texture by distributing a set of intensity
functions, or spots, over the domain. Each spot represents
a particle moving over a small step in time and results in
a streak in the direction of the local flow from where the
particle is seeded.
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One limitation of the original spot noise algorithm was
the lack of velocity magnitude information in the resulting
texture. Enhanced spot noise 70, by De Leeuw and Van Wijk
was introduced to address this problem. Spot noise has also
been applied to the visualisation of turbulent flow 67 by De
Leeuw et al. A spot noise algorithm for interactive visuali-
sation is proposed by De Leeuw 65, also. De Leeuw and Van
Liere also compare spot noise to LIC 68. Spot noise in 2D
combined with colour coding is shown in Figure 2 (right).

Line integral convolution in 2D

Line integral convolution (LIC), first introduced by Cabral
and Leedom 12 is a very popular technique for the dense cov-
erage of vector fields with flow visualisation cues. The orig-
inal methodology behind LIC takes as input a vector field
on a Cartesian grid and a white noise texture of the same
size. The noise texture is locally filtered (smoothed) along
the path of streamlines to acquire a dense visualisation of
the flow field. See Figure 6 (middle) for an example.

The research in flow visualisation based on LIC described
here extends LIC in several ways: (1) adding directional
cues, (2) showing velocity magnitudes, (3) added support for
non-Cartesian grids, (4) allowing real-time and interactive
exploration, (5) extending LIC to 3D, and (6) extending LIC
to unsteady vector field visualisation with time coherency.

Shen et al. address the problem of directional cues in LIC
by combining animation and introducing dye advection into
the computation 126. Kiu and Banks proposed to use a mul-
tifrequency noise for LIC 58. The spatial frequency of the
noise is a function of the magnitude of the local velocity in
the field.

Khouas et al. synthesise LIC-like images in 2D with fur-
like textures 56. Their technique is able to locally control
attributes of the output texture such as orientation, length,
density, and colour.

Much research has been dedicated to bringing LIC com-
putation to interactive rates. Stalling and Hege present sig-
nificant improvements in LIC performance by exploiting co-
herence along streamlines 135, 29. Parallel implementations of
LIC are presented by Cabral and Leedom 11, and Zöckler et
al. 170.

OLIC for 2D FlowVis

Wegenkittl et al. also address the problem of orientation of
flow with their OLIC (Oriented Line Integral Convolution)
approach 157. Conceptually, the OLIC algorithm makes use
of a sparse texture consisting of many separated spots which
are more or less smeared in the direction of the local vec-
tor field through integration. A fast version of OLIC (called
FROLIC) is presented by Wegenkittl and Gröller 156 via a
trade-off of accuracy for time. Berger and Gröller present an
algorithm for animating 2D FROLIC images over the world
wide web 7.

Löffelmann et al. use virtual ink droplets, like streamlets,
to visualise 2D dynamical systems 74. Similar to oriented
line integral convolution (OLIC), the virtual ink droplet
method is capable of visualising not only direction and ve-
locity of flow, but also the orientation of vectors. See Fig-
ure 6 for a comparison between streamlets (right) and LIC
(middle).

2D Texture Advection

Jobard and Lefer use a motion map data structure for animat-
ing 2D, steady-state flow fields 47. The motion map contains
both a dense representation of the flow and the information
required to animate the flow. It offers the advantage of sav-
ing memory and computation time since only one image of
the flow has to be computed and stored in the motion map
data structure.

Jobard et al. propose a technique to visualise dense rep-
resentations of unsteady vector fields based on what they
call a Lagrangian-Eulerian Advection scheme 45. The algo-
rithm combines a dense, time-dependent, integration-based
representation of the vector field with interactive frame rates.
Some results from the technique are shown in Figure 3.

Unsteady flow visualisation techniques may address the
problem of interactive performance time through the use of
texture mapping supported by the graphics hardware. Becker
and Rumpf illustrate hardware-supported texture transport
for 2D, unsteady flow data 6.

Jobard et al. 43, 44 present additional 2D, unsteady flow vi-
sualisation techniques. They achieve high performance via
the use of graphics hardware. They also detail spatial and
temporal coherence techniques, dye advection techniques,
and feature extraction.

3.2. Texture-based FlowVis on surfaces or boundaries

Texture-based techniques are, in general, better methods for
conveying flow information on sectional slices than tech-
niques using (long) geometric objects. This is because the
connection along the path of what would be a streamline is
lost with dense, texture-based techniques. Thus the depiction
of the flow is not misleading in terms of a potential sugges-
tions of particle paths. Let us recall that the vector compo-
nent orthogonal to the slice is removed when using texture-
based and geometric methods for visualisation results.

Spot noise on boundaries or slices

De Leeuw et al. extend the spot noise algorithm to surfaces
in a study that compares experimental surface flow visuali-
sation (with oil) to that of spot noise on surfaces 66.

A combination of both texture-based FlowVis (on slices)
and 3D arrows for 3D FlowVis is employed by Telea and Van
Wijk 144 where arrows denote the main characteristics of the
3D flow (after clustering) and a 2D slice with spot noise or
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Figure 3: Three images taken from an animation of an unsteady vector field created with the Lagrangian-Eulerian advection
algorithm 45.

LIC is used to visualise the rest of the vector field (on a slice
only).

LIC for boundary flows

A large body of research literature is dedicated to the exten-
sion of LIC onto boundary surfaces, surveyed, for example,
by Stalling 134.

The extension of LIC to non-Cartesian grids and surfaces
is presented by researchers such as Forssell 20. Forssell and
Cohen 21 extend LIC to curvilinear surfaces with animation
techniques, add magnitude and direction information, and
show how to use LIC to depict time-dependent flows. Their
algorithm also utilises texture mapping hardware to improve
performance time towards interactive rates.

Teitzel et al. 142 present an approach that works on both
2D unstructured grids and directly on triangulated surfaces
in three-dimensional space. Mao et al. 82 present an algo-
rithm for convolving solid white noise on triangle meshes in
3D space, and extend LIC for visualising a vector field on
arbitrary 3D surfaces.

Battke et al. 4 describe an extension of LIC for arbitrary
surfaces in 3D. Some approaches are limited to curvilinear
surfaces, i.e., surfaces which can be parameterised by using
2D-coordinates. Their method also handles the case of gen-
eral, multiply connected surfaces.

Scheuermann et al. present a method for visualising 3D
vector fields that are defined on a 3D manifold 118. Their
work addresses the normal vector component to the surface
that other methods do not.

A problem with many curvilinear grid LIC algorithms is
that the resulting LIC textures may be distorted after being
mapped onto the geometric surfaces, since a curvilinear grid
usually consists of cells of different sizes. Mao et al. propose
a solution to the problem by using multigranularity noise as
the input image for LIC 81.

UFLIC, PLIC, et cetera

Shen and Kao present UFLIC (Unsteady Flow LIC), which
incorporates time into the convolution 127, 125. See Figure 4
(left). Their algorithm addresses problems with temporal
coherency by successively updating the convolution results
over time. They also propose a parallel UFLIC algorithm.

Verma et al. present a method for comparative analysis
of streamlines and LIC called PLIC 149. A visual compari-
son between ELIC (enhanced LIC) 89, PLIC, and UFLIC is
shown in Figure 4.

3.3. Texture-based FlowVis in 3D

High computational costs, demanding memory require-
ments, occlusion, and visual complexity can all be inhibi-
tants for texture-based flow visualisation in 3D.

Figure 5: 3D LIC 38.

LIC in 3D

Occlusion and interactive performance are nontrivial chal-
lenges when implementing LIC in 3D (shown in Figure 5).
Rezk-Salama et al. tackle the problem of interactive perfor-
mance using a 3D-texture mapping approach combined with
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Figure 4: A comparison of 3 LIC techniques: (left) UFLIC, (middle) ELIC, and (right) PLIC 149.

Figure 6: Example of comparing FlowVis techniques from Sections 2, 3, and 4 72. FlowVis by the use of arrows (left) is compared
to texture-based FlowVis by the use of LIC (middle) and FlowVis based on geometric objects (right).

an interactive clipping plane to address the problems of oc-
clusion and interaction 103.

A combined approach of direct volume rendering and LIC
is taken by Interrante 40 for extending LIC to 3D. Interrante
and Grosch address some perceptual difficulties encountered
with dense, 3D visualisations 38, 39, 40. Techniques for selec-
tively emphasising important regions of interest in the flow,
enhancing depth perception, and improving orientation per-
ception of overlapping streamlines are discussed.

Texture advection in 3D

Kao et al. discuss the use of 3D and 4D texture advection
for the visualisation of 3D fluid flows 51. Formidable chal-
lenges are introduced by the memory requirements involved
in using 3D and 4D textures. They also apply a steady-state
animation to these 3D and 4D textures.

4. Geometric Flow Visualisation

Geometric FlowVis entails extracting geometric objects for
which their shape is directly related to the underlying data. In
what follows, we discuss geometric flow visualisation tech-
niques such as contouring in both 2D and 3D as well as geo-
metric FlowVis using integral objects (such as streamlines).

Contouring in 2D

Contouring is a natural extension to colour coding in 2D. A
contour is a boundary between two distinct regions. Often,
the user is highly interested in transition areas in the vector
field. In a colour plot, transitions are shown by a change of
colour. With contouring, an explicit line or curve is drawn.

Isosurfaces for 3D FlowVis

Extending contouring from 2D to 3D, results in the use of
isosurfaces for 3D flow visualisation. Special care needs to
be taken with isovalue selection, mostly because of the usu-
ally smooth nature of flow data — in cases of no sharp tran-
sitions within the data, any isovalue lacks (at least partially)
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intuitive interpretation. Nevertheless there are useful appli-
cations of isosurfaces to flow data, e.g., in the visualisation
of shock waves 139 or burning fronts in simulated combus-
tion data. Furthermore, when scalar clipping is used together
with colour coding of slices, this naturally combines with
isosurfaces as long as isovalue and clipping value coincide.

Röttger et al. present a hardware accelerated volume ren-
dering technique which allows to use multiple (semitrans-
parent) isosurfaces for visualisation 109. Treinish applies iso-
surfacing to visualise (unsteady) weather data 145. Weber et
al. 155 present crack-free isosurface extraction for adaptive
(multiresolution) grids. Laramee and Bergeron provide iso-
surfaces for super adaptive resolution grids 63.

4.1. Geometric 2D FlowVis using integral objects

In this subsection we shortly discuss geometric FlowVis
techniques in 2D based on integral objects such as stream-
lets, streamlines, and their relatives within unsteady flows.
Also, the seeding problem is addressed, which requires a so-
lution in order to realise better distributions of integral ob-
jects.

Streamlets in 2D

If flow vectors are integrated for a very short time, streamlets
are generated. Even though short, streamlets already com-
municate temporal evolution along the flow. Figure 6 shows
an example, where several streamlets are used to visualise a
2D flow field.

Streamlines in 2D

If longer integration is performed (as compared to stream-
lets), streamlines are gained. They are a natural extension of
glyph-based techniques and offer intuitive semantics: users
easily understand that flows evolve along integral objects.

Streaklines, timelines, and pathlines

When unsteady flow data are investigated, several distinct
integral objects are used for flow visualisation. A pathline or
particle trace is the trajectory that a particle follows in a fluid
flow 121. A timeline joins the positions of particles released at
the same instant in time from different insertion points, i.e.,
joins points at a constant time t 88. A streakline is traced by a
set of particles that have previously passed through a unique
point in the domain 121. Streaklines relate to continuous in-
jection of foreign material into real flow. Sanna et al. present
an adaptive visualisation method using streaklines where the
seeding of streaklines is a function of local vorticity 116.

Streamline seeding in 2D

One important aspect of streamlines, or integral curves,
when used for visualising continuous vector fields is the best

choice of initial conditions. Since, in general, evenly dis-
tributed seed points do not result in evenly spaced stream-
lines, special algorithms need to be employed. Turk and
Banks 146 as well as Jobard and Lefer 46 developed tech-
niques for automatically placing seed points to achieve a uni-
form distribution of streamlines on a 2D vector field.

Streamline seeding strategies in 2D may also be topology-
based. Verma et al. 150 present a seed placement strategy for
streamlines based on flow features in the data set. Their goal
is to capture flow patterns near critical points in the flow
field.

Building on their previous work, Jobard and Lefer pre-
sented a multiresolution (MR) method for visualising large,
2D, steady-state vector fields 49. The MR hierarchy supports
enrichment and zooming. The user is able to interactively
set the density of streamlines while zooming in and out of
the vector field (Figure 7). The density of streamlines can be
computed automatically as a function of velocity or vorticity.

Seeding of integral objects becomes a special challenge
when dealing with time-dependent data. Jobard and Lefer
presented an unsteady FlowVis algorithm by correlating in-
stantaneous visualisations of the vector field at the stream-
line level 48. For each frame, a feed forward algorithm com-
putes a set of evenly-spaced streamlines as a function of the
streamlines generated for the previous frame. Their method
also provides full control of the image density so that smooth
animations of arbitrary density can be produced.

4.2. FlowVis using geometric objects on slices or
boundaries

After discussing 2D FlowVis based on geometric objects,
this subsection shortly addresses similar approaches on sub-
sets of 3D flows such as boundary flows. Interpretation of in-
tegral curves on sectional slices requires special care, again.

Integrated tufts

Wegenkittl et al. use integrated tufts (similar to streamlets),
seeded on specific equilibrium surfaces, for the visualisation
of a complex dynamical system 158, also over variations of
that system in a fourth dimension.

Geometric objects on slices or boundaries

Similar to 2D FlowVis, geometric objects such as stream-
lines are also used for visualising boundary flows or sec-
tional slices through 3D flow 19. However, it is important to
note that the use of these objects on slices may be mislead-
ing, even within steady flow data sets. A streamline on a slice
may depict a closed loop, even though no particle would ever
traverse the loop. The reason again lies in the fact, that flow
components which are orthogonal to the slice are omitted
during flow integration.
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Figure 7: Three images from an interactive exploration of a vector field using the MR viewer 49. A suitable level of resolution
can be chosen while maintaining a roughly constant streamline density.

Streamline seeding on boundary surfaces

Mao et al. 80 extend the streamline seeding of Turk and
Banks 146 in order to generate evenly distributed streamlines
on boundary surfaces within curvilinear grids.

4.3. 3D FlowVis using geometric objects

When dealing with 3D flow, a rich variety of geometric
objects is available for flow visualisation. This subsection
addresses a series of objects, from streamlets to flow vol-
umes, primarily sorted according to their dimensionality, and
within equal dimensionality roughly with respect to which
technique extends to another.

Streamlets in 3D

Streamlets easily extend to 3D, although perceptual prob-
lems may arise due to distortions resulting from the ren-
dering projection. Also, seeding becomes more important in
3D, again. Löffelmann and Gröller use a thread of streamlets
along characteristic structures of 3D flow to gain selective,
but importance-based seeding as well as an enhancement of
abstract flow topology through direct visualisation cues 73.

Streamlines in 3D

At NASA the Flow Analysis Software Toolkit (FAST) 1 is
used to visualise CFD data based on streamlines in 3D. Care-
ful seeding is necessary to obtain useful results, since visual
clutter can easily become a problem.

Illuminated streamlines

Zöckler et al. present illuminated streamlines to improve
perception of streamlines in 3D by taking advantage of the
texture mapping capabilities supported by graphics hard-
ware 169. Their shading technique increases depth informa-
tion. By making the streamlines partially transparent, they

also address the problem of occlusion, as shown in Figure 8
(left). For seeding, the authors propose an interactive seed-
ing probe which can be moved around to start streamlines at
specific places of interest. Also, seeding near potential ob-
jects of interests is demonstrated.

Particle tracing in 3D

Kenwright and Lane present an efficient, 3D particle tracing
algorithm that is also accurate for interactive investigation of
large, unsteady, aeronautical simulations 55. A performance
gain is obtained by applying tetrahedral decomposition to
speed up point location and velocity interpolation in curvi-
linear grids.

Teitzel et al. analyse different integration methods in order
to evaluate the trade-off between time and accuracy 141, 143.
They present a 3D particle tracing algorithm targeted at
sparse grids that is very efficient with respect to storage
space and computing time. The authors recommend using
sparse grids as a data compression method in order to visu-
alise huge data sets.

Nielson presents efficient and accurate methods for com-
puting tangent curves for 3D flows 87. The methods work
directly with physical coordinates, eliminating the need to
switch back and forth to computational coordinates. Efficient
particle tracing methodologies are also addressed by Sadar-
joen et al. 111.

Since streamlines are usually easily computed in real
time, they offer (together with their intuitive semantics) an
often chosen tool for interactive flow analysis. Bryson and
Levit 10 demonstrate seeding of integral objects in a virtual
3D environment by use of a so-called rake.

Stream ribbons and streamtubes

A first extension of streamlines in 3D are stream ribbons
and streamtubes. A stream ribbon is basically a streamline
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with a winglike strip added, to also visualise rotational be-
haviour of the 3D flow (which is not possible with stream-
lines alone) 148. A streamtube is a thick streamline that can
be extended to show the expansion of the flow 148. Stream
ribbons and streamtubes offer advantages over streamlines
in that way, that they can encode more properties, such as
divergence and convergence of the vector field, in the geo-
metric properties of the respective integral objects.

Ueng et al. present techniques for efficient streamline,
stream ribbon, and streamtube constructions on unstructured
grids 148. A specialised Runge-Kutta method is employed to
speed up streamline computation. Explicit solutions are cal-
culated for the angular rotation rates of stream ribbons and
the radii of streamtubes. The resulting speedup in overall
performance aids in the exploration of large flow fields.

Fuhrmann and Gröller 23 use so-called dash tubes, i.e.,
animated, opacity-mapped streamtubes, as a visualisation
icon. An algorithm is described which places the dash tubes
evenly in 3D space. They also apply a magic lens and magic
box as interaction techniques for investigating densely filled
areas without filling the image with visual detail and com-
plexity.

Laramee introduces the stream runner as an extension
of streamtubes — an interactively controlled 3D flow vi-
sualisation technique that attempts to minimise occlusion,
minimise visual complexity, maximise directional cues, and
maximise depth cues by letting the user control the length of
the streamtubes 62.

Stream polygons

Another extension of streamlines are stream polygons used
by Schroeder et al. 120. Stream polygons are tools to visu-
alise vectors and tensors using tubes with a polygonal cross
section. The properties of the polygons such as the radius,
the number of sides, the shape and the rotation reflect prop-
erties of the vector field including strain, displacement, and
rotation.

Streamballs and streakballs

Streamballs are a useful flow visualisation technique used by
Brill et al. 9, which visualises divergence and acceleration
in fluid flow. Streamballs split or merge depending on con-
vergence/divergence and acceleration/deceleration, respec-
tively.

Teitzel and Ertl introduce streakballs when they present
and compare two different approaches to accelerate particle
tracing on sparse grids and curvilinear sparse grids for un-
steady flow data 140.

Stream surfaces

Yet another extension to streamlines are stream surfaces,
which are surfaces that are everywhere tangent to a vector

field. A stream surface can be approximated by connecting
a set of streamlines along timelines (and varying the number
of streamlines used according to convergence or divergence
of the flow) 36. Stream surfaces are very good for texture-
based visualisation techniques such as Spot Noise and LIC,
because there is no cross-flow component normal to the sur-
faces, i.e. the vector field is not projected like it is for 2D
slices through a 3D domain. Stream surfaces present chal-
lenges related to occlusion, visual complexity, and interpre-
tation.

Hultquist presents an interactive flow visualisation tech-
nique using stream surfaces 35. Van Wijk presents two
follow-up techniques for generating implicit stream sur-
faces 164. Cai and Heng 13 address the issues associated with
the placement and orientation of stream surfaces in 3D.

Löffelmann et al. present stream arrows (see Figure 8,
middle) as an enhancement of stream surfaces by separating
arrow-shaped portions from a stream surface 76, 75. Stream
arrows address the problem of occlusion associated with
3D flow visualisation, but especially with stream surfaces.
Stream arrows also provide additional information about the
flow, usually not seen with stream surfaces, such as flow di-
rection, convergence/divergence, et cetera.

Van Wijk simulates stream surfaces by a large set of so-
called surface particles 163. Surface particles exhibit less oc-
clusion when compared to stream surfaces. Interestingly,
Van Wijk’s approach in a way anticipated recent advances
in pixel-based rendering techniques.

Time surfaces in 3D

A natural extension of timelines (in 2D or 3D) are time
surfaces, when constant-time instants of moving particles
are assumed, which previously have been released from a
two-dimensional patch. An example of an application of
this principle, are level-set surfaces used by Westermann et
al. 161.

Flow volumes

The last (direct) extension of a streamline into 3D described
here are flow volumes (see Figure 8, right). A flow volume
is a specific subset of a 3D flow domain, which is traced out
by a particular initial 2D patch over time as described by
Max et al. 83. The resulting volume is divided up into a set
of semitransparent tetrahedra, which are volume rendered in
hardware in a way derived from the method of Shirley and
Tuchmann 128.

Becker et al. extend flow volumes to unsteady flow 5.
The resulting unsteady flow volumes are the 3D analogue
of streaklines. Considerations are made when extending the
visualisation technique to unsteady flows since particle paths
may become convoluted in time. The authors present some
solutions to the problems which occur in subdivision, ren-
dering, and system design. The resulting algorithms are ap-
plied to a variety of flow types including curvilinear grids.
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Figure 8: Examples of flow visualisation using geometric objects — illuminated streamlines (left) 169, stream arrows (middle) 76,
and flow volumes (right) 83.

5. Feature Extraction

Feature-based flow visualisation is an approach for visual-
ising the flow data at a high level of abstraction. The flow
data is described by features, which represent the interest-
ing objects or structures in the data. The original data set
is then no longer needed. Because often, only a small per-
centage of the data is of interest, and the features can be de-
scribed very compactly, an enormous data reduction can be
achieved. This makes it possible to visualise even very large
data sets interactively.

The first step in feature-based visualisation is feature ex-
traction. The goal of feature extraction is determining, quan-
tifying and describing the features in a data set.

A feature can be loosely defined as any object, structure or
region that is of relevance to a particular research problem.
In each application, in each data set and for each researcher,
a different feature definition could be used. Common exam-
ples in fluid dynamics are vortices, shock waves, separation
and attachment lines, recirculation zones and boundary lay-
ers. In the next section a number of feature-specific detection
techniques will be discussed. Although most feature detec-
tion techniques are specific for a particular type of feature, in
general the techniques can be divided into three approaches:
based on image processing, on topological analysis, and on
physical characteristics.

5.1. Image Processing

Image processing techniques were originally developed for
analysis of 2D and 3D image data, usually represented as
scalar (greyscale) values on a regular rectangular grid. The
problem of analysing a numerical data set, represented on a
grid, is similar to analysing an image data set. Therefore, ba-
sic image processing techniques can be used for feature ex-
traction from scientific data. A feature may be distinguished
by a typical range of data values, just as different tissue
types are segmented from medical images. Edges or bound-
aries of objects are found by detecting sudden changes in

the data values, marked by high gradient magnitudes. Thus,
basic image segmentation techniques, such as thresholding,
region growing, and edge detection can be used for feature
detection. Also, objects may be quantitatively described us-
ing techniques such as skeletonisation or principal compo-
nent analysis. However, a problem is, that in computational
fluid dynamics simulations, often grid types are used such
as structured curvilinear grids, or unstructured tetrahedral
grids. Many techniques from image processing cannot be
easily adapted for use with such grids.

5.2. Vector Field Topology

A second approach to feature extraction is the topological
analysis of 2D linear vector fields, as introduced by Hel-
man and Hesselink 30, 32, which is based on detection and
classification of critical points. These are the points where
the vector magnitude is zero. By computing the eigenvalues
and eigenvectors of the velocity gradient tensor, the critical
points can be classified and tangent curves can be computed.
(See Figure 9.) Using this information, a schematic visuali-
sation of the vector field can be generated. (See Figure 15.)
Helman and Hesselink have also extended their algorithm to
2D time-dependent and to 3D flows.

Scheuermann et al. presented an algorithm for visualis-
ing nonlinear vector field topology 119, because other known
algorithms are all based on (piecewise or bi-) linear interpo-
lation, which destroys the topology in case of nonlinear be-
haviour. Their algorithm makes use of Clifford algebra for
computing polynomial approximations in areas with nonlin-
ear local behaviour, especially higher-order singularities.

De Leeuw and Van Liere presented a technique for visu-
alising flow structures using multilevel flow topology 69. In
high-resolution data sets of turbulent flows, the huge num-
ber of critical points can easily clutter a flow topology im-
age. The algorithm presented attempts to solve this problem
by removing small-scale structures from the topology. This
is achieved by applying a pair distance filter which removes
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Figure 9: Vector field topology: critical points classified by
the eigenvalues of the Jacobian 30.

pairs of critical points, that are near each other. This removes
small topological structures such as vortices, but does not af-
fect the global topological structure. The threshold distance,
which determines which critical points are removed, can be
adapted, making it possible to visualise the structure at dif-
ferent levels of detail at different zoom levels.

5.3. Selective Visualisation

A generic approach to feature extraction is Selective Visual-
isation, which is described by Van Walsum 152. The feature
extraction process is divided into four steps (see Figure 10).
The first step is the segmentation step. In principle, any seg-
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Figure 10: The feature extraction pipeline 102.

mentation technique can be used, that results in a binary seg-
mentation of the original data set. A very simple segmenta-
tion is obtained by thresholding of the original or derived
data values; also, multiple thresholds can be combined. The
data set resulting from the segmentation step is a binary data
set with the same dimensions as the original data set. The
binary values in this data set denote whether or not the cor-
responding points in the original data set are selected. The
next step in the feature extraction process is the clustering
step, in which all points that have been selected are clustered
into coherent regions. In the next step, the attribute calcu-
lation step, these regions are quantified. Attributes, such as

position, volume and orientation, of the regions are calcu-
lated. We now speak of objects, or features, with a number
of attributes, instead of clusters of points. Once we have de-
termined these quantified objects, we don’t need the origi-
nal data anymore. With this, we may accomplish a data re-
duction factor of 1000 or more. In the fourth and final step,
iconic mapping, the calculated attributes are mapped onto
the parameters of certain parametric icons, which are easy to
visualise, such as ellipsoids.

6. Feature-based flow visualisation

In this section, a number of feature extraction techniques will
be discussed that have been specifically designed for certain
types of features. These techniques are often based on physi-
cal or mathematical (topological) properties of the flow. Fea-
tures that often occur in flows are vortices, shock waves and
separation and attachment lines.

6.1. Vortex extraction

Features of great importance in flow data sets, both in the-
oretical and in practical research, are vortices. (See Fig-
ure 11.) In some cases, vortices (turbulence) have to be im-
pelled, for example to stimulate mixing of fluids, or to re-
duce drag. In other cases, vortices have to be prevented, for
example around aircraft, where they can reduce lift. There

Figure 11: Reconstruction of a hairpin vortex tube, with
grooves indicating velocity 2.

are many different definitions of vortices and likewise many
different vortex detection algorithms. A distinction can be
made in algorithms for finding vortex regions and algorithms
that only find the vortex cores.

Other overviews of algorithms are given by Roth and
Peikert 107 and by Banks and Singer 2.

There are a number of algorithms for finding regions with
vortices:

• One idea is to find regions with a high vorticity magni-
tude. Vorticity is the curl of the velocity, that is, ∇× v,
and represents the local flow rotation, both in speed and
direction. However, although a vortex may have a high
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vorticity magnitude, the reverse is not always true 168. Vil-
lasenor and Vincent present an algorithm for constructing
vortex tubes using this idea 151. They compute the average
length of all vorticity vectors contained in small-radius
cylinders, and use the cylinder with the maximum aver-
age for constructing the vortex tubes.

• Another idea is to make use of helicity instead of vortic-
ity 71, 167. The helicity of a flow is the projection of the
vorticity onto the velocity, that is (∇× v) · v. This way,
the component of the vorticity perpendicular to the veloc-
ity is eliminated.

• Another simple idea is to search for regions of low pres-
sure 104.

• Jeong and Hussain define a vortex as a region where two
eigenvalues of the symmetric matrix S2 +Ω2 are negative,
where S and Ω are the symmetric and antisymmetric parts
of the Jacobian of the vector field, respectively 41: S =
1
2 (V +V T ), and Ω = 1

2 (V −V T ). This method is known
as the λ2 method.

The above methods may all work in certain simple flow data
sets, but they do not hold, for example, in turbomachinery
flows 107, such as shown in Figure 12.

Figure 12: Visualisation of a turbomachinery flow 107.

There are also some algorithms specifically for finding
vortex core lines:

• Globus and Levit presented a method for finding core
lines by integrating streamlines from the critical points in
the velocity field 25.

• It is also possible to use streamlines of the vorticity
field 84, but such an algorithm is very sensitive to the start-
ing location.

• Banks and Singer also use streamlines of the vorticity

field, with a correction to the pressure minimum in the
plane perpendicular to the vortex core 133, 3.

• Combining the above ideas, Roth and Peikert suggest that
a vortex core line can be found where vorticity is parallel
to velocity 107. This sometimes results in coherent struc-
tures, but in most data sets it does not give the expected
features.

• In the same article, Roth and Peikert suggest that, in linear
fields, the vortex core line is located where the Jacobian
has one real-valued eigenvector, and this eigenvector is
parallel to the flow 107. However, in their own application
of turbomachinery flows, the assumption of a linear flow
is too simple. The same algorithm is presented by Sujudi
and Haimes 136.

• Recently, Jiang et al. presented a new algorithm for vortex
core region detection 42, which is based on ideas derived
from combinatorial topology. The algorithm determines
for each cell if it belongs to the vortex core, by examining
its neighbouring vectors.

A few of these algorithms will be reviewed in detail, next.

Banks and Singer developed a predictor-corrector algo-
rithm for finding vortex cores 3. After initialisation, vortex
cores are tracked by predicting in the direction of the vor-
ticity vector and correcting to the pressure minimum in the
plane perpendicular to that vorticity vector. Next, they create
vortex tubes, by computing cross sections of the vortices, in
a plane perpendicular to the vortex core. They use a thresh-
old of the pressure as a selection criterion, in combination
with the restriction that the angle between the vorticity vec-
tor at any point on the cross section and the vorticity vector
at the vortex core is no more than ninety degrees.

Sujudi and Haimes developed an algorithm for finding
the centre of swirling flow in 3D vector fields and imple-
mented this algorithm in pV3 136. Although pV3 can use
many types of grids, the algorithm has been implemented
for tetrahedral cells. When using data sets with other types
of cells, these first have to be decomposed into tetrahedral
cells. This is done for efficiency, because linear interpolation
for the velocity can be used in the case of tetrahedral cells.
The algorithm is based on critical-point theory and uses the
eigenvalues and eigenvectors of the velocity gradient tensor
or rate-of-deformation tensor. The algorithm works on each
point in the data set separately, making it very suitable for
parallel processing. The algorithm searches for points where
the velocity gradient tensor has one real and two complex-
conjugate eigenvalues and the velocity is in the direction of
the eigenvector, corresponding to the real eigenvalue. The
algorithm results in large coherent structures when a strong
swirling flow is present, and the grid cells are not too large.
The algorithm is sensitive to the strength of the swirling flow,
resulting in incoherent structures or even no structures at all
in weak swirling flows. Also, if the grid cells are large, or
irregularly sized, the algorithm has difficulties finding co-
herent structures or any structures at all.
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Kenwright and Haimes also studied the eigenvector
method and concluded that it has proven to be effective in
many applications 53. The drawbacks of the algorithm are
that it does not produce contiguous lines. Line segments are
drawn for each tetrahedral element, but they are not neces-
sarily continuous across element boundaries. Furthermore,
when the elements are not tetrahedra, they have to be de-
composed into tetrahedra first, introducing a piecewise lin-
ear approximation for a nonlinear function. Another prob-
lem is that flow features are found that are not vortices. In-
stead, swirling flow is detected, of which vortices are an ex-
ample. However, swirling flow also occurs in the formation
of boundary layers. Finally, the eigenvector method is sen-
sitive to other nonlocal vector features. For example, if two
axes of swirl exist, the algorithm will indicate a rotation that
is a combination of the two swirl directions. The eigenvector
method has successfully been integrated into a finite element
solver for guiding mesh refinement around the vortex core 16.

Roth and Peikert have developed a method for finding
core lines using higher-order derivatives, making it possible
to find strongly curved or bent vortices 108. They observe that
the eigenvector method is equivalent to finding points where
the acceleration a is parallel to the velocity v, or equivalently,
to finding points of zero curvature. The acceleration a is de-
fined as:

a =
Dv
Dt

, (6)

where the notation D f
Dt is used for the derivative following a

particle, which is defined, in a steady flow, as ∇ f ·v. There-
fore:

a =
Dv
Dt

= ∇v ·v = J ·v, (7)

with J the Jacobian of v, that is the matrix of its first deriva-
tives.

Roth and Peikert improve the algorithm by defining vortex
cores as points where

b =
Da
Dt

=
D2v
Dt2 (8)

is parallel to v, that is, points of zero torsion. The method
involves computing a higher-order derivative, introducing
problems with accuracy, but it performs very well. In com-
parison with the eigenvector method, this algorithm finds
strongly curved vortices much more accurately. Roth and
Peikert also introduce two attributes for the core lines: the
strength of rotation and the quality of the solution. This
makes it possible for the user to impose a threshold on the
vortices, to eliminate weak or short vortices. Peikert and
Roth have also introduced a new operator, the “parallel vec-
tors” operator 93, with which they are able to mathematically
describe a number of previously developed methods under
one common denominator. Using this operator they can de-
scribe methods based on zero curvature, ridge and valley
lines, extremum lines and more.

Jiang et al. recently presented a new approach for detect-
ing vortex core regions 42. The algorithm is based on an idea
which has been derived from Sperner’s lemma in combina-
torial topology, which states that it is possible to deduce the
properties of a triangulation, based on the information given
at the boundary vertices. The algorithm uses this fact to clas-
sify points as belonging to a vortex core, based on the vector
orientation at the neighbouring points. In 2D, the algorithm
is very simple and straightforward, and has only linear com-
plexity. In 3D, the algorithm is somewhat more difficult, be-
cause it first involves computing the vortex core direction,
and next, the 2D algorithm is applied to the velocity vectors
projected onto the plane perpendicular to the vortex core di-
rection. Still, also the 3D algorithm has only linear complex-
ity.

The above described methods all use a local criterion for
determining on a point-to-point basis where the vortices are
located. The next algorithms use global, geometric criteria
for determining the location of the vortices. This is a conse-
quence of using another vortex definition.

Sadarjoen and Post present two geometric methods for
extracting vortices in 2D fields 112. The first is the curva-
ture centre method. For each sample point, the algorithm
computes the curvature centre. In the case of vortices, this
would result in a high density of centre points near the
centre of the vortex. The method works but has the same
limitations as traditional point-based methods, with some
false and some missing centres. The second method is the
winding-angle method, which has been inspired by the work
of Portela 94. The method detects vortices by selecting and
clustering looping streamlines. The winding angle αw of a
streamline is defined as the sum of the angles between the
different streamline segments. Streamlines are selected that
have made at least one complete rotation, that is, αw ≥ 2π. A
second criterion checks that the distance between the starting
and ending points is relatively small. The selected stream-
lines are used for vortex attribute calculation. The geometric
mean is computed of all points of all streamlines belonging
to the same vortex. An ellipse fitting is computed for each
vortex, resulting in an approximate size and orientation for
each vortex. Furthermore, the angular velocity and rotational
direction can be computed. All these attributes can be used
for visualising the vortices. (See Figure 13.)

6.2. Shock wave extraction

Shock waves are also important features in flow data sets,
and can occur, for example, in flows around aircraft. (See
Figure 14.) Shock waves could increase drag and cause
structural failure, and therefore, are important phenomena
to study. Shock waves are characterised by discontinuities
in physical flow quantities such as pressure, density and ve-
locity. Therefore, shock detection is comparable to edge de-
tection, and similar principles could be used as in image
processing. However, in numerical simulations, the discon-
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Figure 13: Flow in the Atlantic Ocean, with streamlines
and ellipses indicating vortices. Blue and red ellipses indi-
cate vortices rotating clockwise and counterclockwise, re-
spectively 113.

Figure 14: Shock waves around a model of a X-15 in a wind
tunnel with an airflow at Mach 3.5. Image from the NASA
website.

tinuities are often smeared over several grid points, due to
the limited resolution of the grid. Ma et al. have investi-
gated a number of techniques for detecting and for visual-
ising shock waves 79. Detecting shocks in two dimensions
has been extensively investigated 64, 86, 105. However, these
techniques are in general not applicable to shocks in three
dimensions. They also describe a number of approaches for
visualising shock waves. The approach of Haimes and Dar-
mofal 28 is to create isosurfaces of the Mach number normal
to the shock, using a combined density gradient/Mach num-
ber computation. Van Rosendale presents a two-dimensional
shock-fitting algorithm for unstructured grids 105. The idea
relies on the comparison of density gradients between grid
nodes.

Ma et al. compare a number of algorithms for shock ex-
traction and also present their own technique 79:

• The first idea is to create an isosurface of the points where
the Mach number is one. However, this results in the sonic
surface, which, in general, does not represent a shock.

• Theoretically, a better idea is to create an isosurface of the
points where the normal Mach number is equal to one.
However, if the surface is unknown, it is impossible to
compute the Mach number, normal to the surface.

• This problem can be resolved, by approximating the
shock normal with the density gradient, since a shock is
also associated with a large gradient of the density. There-
fore, ∇ρ is (roughly) normal to the shock surface. Thus,
the algorithm computes the Mach number in the direc-
tion of, or projected onto, the density gradient. The shock
surface is constructed from the points where this Mach
number equals one. This algorithm is also used by Lovely
and Haimes 78, but they define the shock region as the re-
gion within the isosurface of Mach number one, and use
filtering techniques to reconstruct a sharp surface.

• Pagendarm presented an algorithm that searches for max-
ima in the density gradient 91. The first and second deriva-
tives of the density in the direction of the velocity are
computed. Next, zero-level isosurfaces are constructed of
the second derivative, to find the extrema in the density
gradient. Finally, the first derivative is used to select only
the maxima, which correspond to shock waves, and dis-
card the minima, which represent expansion waves. This
can be done by selecting only positive values of the first
derivative. However, the second derivative can also be
zero in smooth regions with few disturbances. In these re-
gions the first derivative will be small, therefore, these re-
gions can be excluded by discarding all points where the
first derivative is below a certain threshold ε. Of course,
this poses the problem of finding the correct ε. When the
value is too small, erroneous shocks will be found, but if
the value is too large, parts of the shocks could disappear.
This algorithm can also be used for finding discontinu-
ities in other types of scalar fields, and thus for finding
other types of features.

• Ma et al. present an adapted version of this algorithm,
which uses the normal Mach number to do the selection
in the third step 79. Again, in the first and second step,
the zero-level isosurfaces of the second directional deriva-
tive of the density are constructed. But for discriminat-
ing shock waves from expansion waves and smooth re-
gions, the normal Mach number is used. More precisely,
those points are selected where the normal Mach number
is close to one. Here also, a suitable neighbourhood of one
has to be chosen.

6.3. Separation and attachment line extraction

Other features in flow data sets are separation and attach-
ment lines on the boundaries of bodies in the flow. These are
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the lines where the flow abruptly moves away from or returns
to the surface of the body. These are important features in
aerodynamic design because they can cause increased drag
and reduced lift 106, and therefore, their occurrence should be
prevented or at least minimised. Helman and Hesselink use

Figure 15: Vector field topology: a topological skeleton of a
flow around a cylinder 32.

vector field topology to visualise flow fields 31, 32. In addition
to the critical points, the attachment and detachment nodes
on the surface of a body determine the topology of the flow.
(See Figure 15.) The attachment and detachment nodes are
not characterised by a zero velocity, because they only occur
in flows with a no-slip condition, that is, all points on the
boundaries of objects are constrained to have zero velocity.
Instead, they are characterised by a zero tangential velocity.
Therefore, streamlines impinging on the surface terminate
at the attachment or detachment node, instead of being de-
flected along the surface.

Globus et al. designed and implemented a system for
analysing and visualising the topology of a flow field with
icons for the critical points and integral curves starting close
to the critical points 25. The system is also able to visualise
attachment and detachment surfaces and vortex cores.

Pagendarm and Walter 92 and De Leeuw et al. 66 used skin-
friction lines for visualising attachment and detachment lines
in the blunt fin data set. For visualising these lines, the wall
shear vector τw is computed, which is the gradient of the
velocity magnitude |v|, projected along the normal onto the
wall:

τw = ∇|v|− (∇|v| ·n)n, (9)

where n is the unit vector normal to the wall. Next, a
standard streamline algorithm is used to integrate the skin-
friction lines from the shear vector field. These skin-friction
lines show the location of separation and attachment of the
flow at the wall. (See Figure 16.)

Kenwright gives an overview of existing techniques for
visualising separation and attachment lines and presents a
new automatic feature detection technique for locating these
lines, based on concepts from 2D phase plane analysis 52.
Some common approaches are:

• Particle seeding and computation of integral curves, such
as streamlines and streaklines, which are constrained to

Figure 16: Skin-friction on a blunt fin from a flow simulation
at Mach 5, visualised with spot noise 66.

the surface of the body. These curves merge along separa-
tion lines.

• Skin-friction lines can be used, analogous to surface oil
flow techniques from wind tunnel experiments 92. (See
above.)

• Texture synthesis techniques can be used to create contin-
uous flow patterns rather than discrete lines 66.

• Helman and Hesselink can automatically generate sepa-
ration and attachment lines from their vector field topol-
ogy 31. These lines are generated by integrating curves
from the saddle and node type critical points in the direc-
tion of the real eigenvector. However, only closed separa-
tions are found, that is, the curves start and end at critical
points.

Open separation does not require separation lines to start
or end at critical points, and is therefore not detected by
flow topology. Open separation has been observed in exper-
iments, but had not previously been studied in flow simula-
tions. However, the algorithm presented by Kenwright does
detect both closed and open separation lines. The theory for
this algorithm is based on concepts from linear phase plane
analysis. It is assumed that the computational domain on the
surface can be subdivided into triangles and the vector com-
ponents are given at the vertices. The algorithm is executed
for each triangle, making it suitable for parallelisation. For
each triangle, a linear vector field is constructed satisfying
the vectors at the vertices. If the determinant of the Jaco-
bian matrix is nonzero, the algorithm continues by calculat-
ing the eigenvalues and eigenvectors of the Jacobian. Every
triangle has a critical point somewhere in its vector field.
The linear vector field is translated to this critical point and
the coordinate system is changed so that the eigenvectors
are orthogonal. This (x,y) plane is also referred to as the
Poincaré phase plane. By computing tangent curves in the
phase plane, we obtain the phase portrait of the system. For
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a saddle, the tangent curves or streamlines converge along
the x and y axes. For a repelling node, they converge along
the x axis and for an attracting node, they converge along the
y axis. If the phase portrait is a saddle or a repelling node, the
intersection of the x axis with the triangle is computed. If it
intersects, the line segment will form part of an attachment
line. If the phase portrait is a saddle or an attracting node,
the intersection of the y axis with the triangle is computed,
and if it does intersect, the line segment will form part of a
separation line.

A problem with this algorithm is that disjointed line seg-
ments are computed instead of continuous attachment and
separation lines. Other problems occur when the flow sepa-
ration or attachment is relatively weak, or when the assump-
tion of locally linear flow is not correct.

Kenwright et al. present two algorithms for detecting sep-
aration and attachment lines 54. The first is the algorithm
discussed above, the second is the parallel vector algorithm.
Both algorithms use eigenvector analysis of the velocity gra-
dient tensor. However, the first is element-based and results
in disjointed line segments, while the second is point-based
and will result in continuous lines.

In the parallel vector algorithm, points are located where
one of the eigenvectors ei of the gradient ∇v is parallel to the
vector field v, that is, points where the streamline curvature
is zero, or in formula:

ei ×v = 0. (10)

The velocity vectors and the eigenvectors can be determined
at the vertices of the grid and interpolated within the ele-
ments. At the vertices, ei × v is calculated for both eigen-
vectors, but only if both eigenvectors are real, that is, the
classification of ∇v at the vertex is either a saddle or a node.
If the cross product ei ×v changes sign across an edge, that
means an attachment or separation line intersects the edge.
The intersection point can then be found by interpolation
along the edge. The attachment and separation lines can be
constructed by connecting the intersection points in each el-
ement. The distinction between attachment and separation
can be made easily, because attachment will occur where v
is parallel to the smallest ei and separation where v is paral-
lel to the largest ei. Another set of lines is detected with this
algorithm, the inflection lines. These can easily be filtered
out by checking if:

∇(ei ×v) ·v = 0. (11)

This will not be true for inflection lines.

Both algorithms discussed by Kenwright et al. correctly
identify many separation and attachment lines, but may fail
in identifying curved separation lines 54. The parallel vector
algorithm will result in continuous lines, whereas the phase
plane algorithm results in discontinuous line segments. Both
algorithms do detect open separation lines, which do not
start or end at critical points.

6.4. Other types of features

There are other types of features, such as recirculation zones
and boundary layers. Work has been done in extracting these
features, for example by Haimes 27 and by Sadarjoen and
Post 110. Hunt et al. give quantitative criteria for dividing a
flow into three areas, with specific characteristics: eddies,
streams, and convergence zones 37.

7. Feature tracking and event detection

In time-dependent data sets, features are objects that evolve
in time. Determining the correspondence between features
in successive time steps, that actually represent the same ob-
ject at different times, is called the correspondence prob-
lem. Feature tracking is involved with solving this corre-
spondence problem. The goal of feature tracking is to be able
to describe the evolution of features through time. During
the evolution, certain events can occur, such as the interac-
tion of two or more features, or significant shape changes
of features. Event detection is the process of detecting such
events, in order to describe the evolution of the features even
more accurately.

There are two basic approaches to solving the correspon-
dence problem. The first is based on region correspondence,
the second on attribute correspondence.

7.1. Region correspondence

Region correspondence involves comparing the regions of
interest obtained by feature extraction. Basically, the binary
images from successive time steps, containing the features
found in these time steps, are compared on a cell-to-cell
basis. Correspondence can be found using a minimum dis-
tance or a maximum cross-correlation criterion 26 or by min-
imising an affine transformation matrix 50. It is also possi-
ble to extract isosurfaces from the four-dimensional time-
dependent data set 159, where time is the fourth dimension.
The correspondence is then implicitly determined by spatial
overlap between successive time steps. This criterion is sim-
ple, but not always correct, as objects can overlap but not
correspond, or correspond but not overlap. Silver and Wang
explicitly use the criterion of spatial overlap instead of cre-
ating isosurfaces in four dimensions 130, 131, 132. They prevent
correspondence by accidental overlap, by checking the vol-
ume of the corresponding features and taking the best match.
This is also the idea of attribute correspondence, which is
discussed next. By using spatial overlap, certain events are
implicitly detected, such as a bifurcation when a feature in
one time step overlaps with two features in the next time
step. Event detection is also discussed more elaborately later,
in Section 7.3.

7.2. Attribute correspondence

With attribute correspondence, the comparison of features
from successive frames is performed on the basis of the at-
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tributes of the features, such as the position, size, volume,
and orientation. These attributes can be computed in the fea-
ture extraction phase, (see Section 5.3,) and can be used for
description and for visualisation of the features, and also for
feature tracking, as described here. The original grid data is
not needed anymore. Samtaney et al. use the attribute values
together with user-provided tolerances to create correspon-
dence criteria 115. For example, for position the following
could be used:

dist(pos(Oi+1), pos(Oi)) ≤ Tdist , (12)

where pos(Oi) and pos(Oi+1) are the positions of the ob-
jects in time steps i and i + 1, respectively, and Tdist is the
user-provided tolerance. For scalar attributes, the difference
or the relative difference could be used. For example, to test
the relative difference of the volume, the following formula
can be used:

vol(Oi+1)− vol(Oi)

max(vol(Oi+1),vol(Oi))
≤ Tvol , (13)

where vol(Oi) and vol(Oi+1) are the volumes of the features
in the two time steps, and Tvol is the tolerance given by the
user. Events such as a bifurcation can also be tested. If a
feature in time step i splits into two features in time step
i+1, the total volume after the event has to be approximately
the same as before the event. The same formula can be used
as for the normal volume test, except that vol(Oi+1) in this
case equals the sum of the volumes of the separate features.
The position criterion in case of a bifurcation event could
involve the weighted average of the individual positions after
the event, where the positions are weighted with the volume:

dist(pos(Oi),
∑(vol(Oi+1) · pos(Oi+1))

∑(vol(Oi+1))
) ≤ Tdist , (14)

where Oi+1 now represents all objects in time step i + 1 that
are involved in the event.

Sethi et al. present a method for image-based motion anal-
ysis, with the use of markers or tokens 123. The basic con-
cept is smoothness of motion of feature point trajectories
in property space. Properties or attributes of features are
represented by points in property space. These points move
through the property space over time, and the algorithm tries
to find the smoothest paths or trajectories in this property
space. The notion of property coherence is used, that is, the
properties are supposed to change gradually. Two algorithms
are described to find the smoothest trajectories: Modified
Greedy Exchange and Simulated Annealing. We will de-
scribe the former here. The basic idea of both algorithms is
to create initial trajectories by connecting the closest points
in property space, and then to iteratively refine the trajecto-
ries to maximise the total smoothness of all trajectories. In
the Greedy Exchange algorithm, this optimisation is done by
exchanging tokens between trajectories and computing the
gain in smoothness. The exchange with the maximum gain is
chosen. The process is repeated, both forward and backward

in time, until no more exchanges are made. The property co-
herence is a measure for three consecutive points in property
space. When we call these points, from three consecutive
time steps, a, b and c, the property coherence is defined as:

F(a,b,c) = w1

(

1−
~ab·~bc

‖~ab‖‖~bc‖

)

+

w2

(

1−2

√

‖~ab‖‖~bc‖

‖~ab‖+‖~bc‖

)

(15)

The first term on the right hand side gives a measure for
the change in direction between the vectors ~ab and ~bc, and
the second term gives a measure for the change in length of
these vectors. Both these measures are combined with user-
provided weights w1 and w2. Because different properties
can have different characteristics, the axes in the property
space can be scaled using suitable scaling factors. The nor-
mal formulas for computing the inner product of two vectors
and the length of a vector are therefore adapted as follows:

~ab · ~bc =
k

∑
i=1

si(bi −ai)(ci −bi) (16)

‖~ab‖ =

√

√

√

√

k

∑
i=1

si(bi −ai)2,

where si is the scaling factor for the ith axis, with ∑ si = 1,
and ai is the ith component of the k-dimensional property
vector a.

Reinders et al. describe an algorithm for feature tracking,
that is based on prediction and verification 99, 100. This algo-
rithm is based on the assumption that features evolve pre-
dictably. That means, if a part of the evolution of a feature
(path) has been found, a prediction can be made into the
next time step (frame). Then, in that next time step, a fea-
ture is sought, that corresponds to the prediction. If a fea-
ture is found that matches the prediction within certain user-
provided tolerances, the feature is added to the evolution and
the search is continued to the next time step. When no more
features can be added to the path, a new path is started. In
this manner, all frames are searched for starting points, both
in forward and backward time direction, until no more paths
can be created.

A path is started by trying all possible combinations of
features from two consecutive frames and computing the
prediction to the next frame. Then, the prediction is com-
pared to the candidate features in that frame. If there is a
match between the prediction and the candidate, a path is
started. To avoid any erroneous or coincidental paths, there is
a parameter for the minimal path length, which is usually set
to 4 or 5 frames. A candidate feature can be defined in two
ways. All features in the frame can be used as candidates, or
only unmatched features can be used, that is, those features
that have not yet been assigned to any path. The first defini-
tion ensures that all possible combinations are tested and that
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the best correspondence is chosen. However, it could also
result in features being added to more than one path. This
has to be resolved afterwards. Using the second definition is
much more efficient, because the more paths are found, the
less unmatched features have to be tested. However, in this
case, the results depend on the order in which the features
are tested. This problem can be solved by starting the track-
ing process with strict tolerances and relaxing the tolerances
in subsequent passes.

The prediction of a feature is constructed by linear ex-
trapolation of the attributes of the features from the last two
frames. Other prediction schemes could also be used, for ex-
ample, if a-priori knowledge of the flow is available.

The prediction is matched against real features using cor-
respondence criteria, similar to the ones used by Samtaney et
al. as discussed above 115. For each attribute of the features, a
correspondence function can be created, which returns a pos-
itive value for a correspondence within the given tolerance,
with a value of 1 for an exact match, and a negative value
for no correspondence. Each correspondence function is as-
signed a weight, besides the tolerance. Using this weight,
a weighted average is calculated of all correspondence func-
tions, resulting in the correspondence factor between the two
features. For this correspondence factor, the same applies as
for the separate correspondence functions, that is, a positive
value indicates a correspondence, with 1 indicating a perfect
match. A negative correspondence factor means no match.

7.3. Event detection

After feature tracking has been performed, event detection is
the next step. Events are the temporal counterparts of spatial
features in the evolution of features. For example, if the path
or evolution of a feature ends, it can be interesting to deter-
mine why that happens. It could be that the feature shrinks
and vanishes, or that the feature moves to the boundary of
the data set and disappears, or that the feature merges with
another feature and the two continue as one. Samtaney et
al. introduced the following events: continuation, creation,
dissipation, bifurcation, amalgamation 115. (See Figure 17.)
Reinders et al. developed a feature tracking system that is
able to detect these and other events 100. The terminology
they use is birth and death instead of creation and dissipa-
tion, and split and merge for bifurcation and amalgamation.
Furthermore, they can detect entry and exit events, where a
feature moves beyond the boundary of the data set. Finally,
for a specific, graph-type feature, the system is able to de-
tect changes in topology. It discriminates loop and junction
events. (See Figure 18.) Many other types of events can be
envisioned, but for each type specific detection criteria have
to be provided.

For event detection, just as for feature tracking, only the
feature attributes are used. Analogous to the correspondence
functions, for event detection, event functions are computed.
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Figure 17: The different types of events as introduced by
Samtaney et al. 115.

For example, to detect a death event, two conditions must
hold. First, the volume of the feature must decrease. And
second, the volume of the prediction must be very small or
negative. The event function for this event returns a posi-
tive value if the volume of the prediction is within the user-
provided tolerance, and 1 if the volume of the prediction is
negative. If the volume is not within the tolerance, the re-
turned value will be negative. The event functions for the
separate attributes are combined into a single factor, which
determines if the event is a death event. A birth event can
be detected by doing the same tests in the backward time
direction.

Similarly, the tests for split and merge events, and for en-
try and exit events are each other’s reverse in time.

8. Visualisation of features and events

The final step in the feature extraction process is, of course,
the visualisation of the features. A number of techniques will
be covered in this section. The most straightforward visual-
isation is to show the nodes in the data set, that have been
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Figure 18: A loop event has occurred. In the top figure, the
feature contains a loop, in the bottom figure, the next frame,
the loop has disappeared 97.

selected in the first step of the feature extraction pipeline,
the selection. This step results in a binary data set, with each
value indicating whether the corresponding node has been
selected or not. This binary data set can be visualised, for
example, with crosses at the selected nodes. In Figure 19,

Figure 19: Visualisation of the selected points in the
backward-facing-step data set 114.

such a visualisation is shown. The visualisation is of a sim-
ulation of the flow behind a backward-facing step. The fea-
ture that is visualised here is a recirculation zone, behind the
step. The points were selected with the criterion: normalised
helicity H > 0.6.

Another simple visualisation technique is to use isosur-
faces. This can be done on the binary data set, resulting from
the selection step, or, if the selection expression is a simple

threshold, directly on the original data set. This results in
isosurfaces enclosing the selected regions.

Also, other standard visualisation techniques can be used
in combination with the boolean data set resulting from the
selection step. For example, in a 3D flow data set, using the
standard methods for seeding streamlines or streamtubes,
will not provide much information about the features and
will possibly result in visual clutter. However, if the selected
points are used to seed streamlines, both backward and for-
ward in time, this can provide useful information about the
features and their origination. See Figure 20, for an example,

Figure 20: Visualisation with streamtubes of the recircula-
tion in the backward-facing-step data set 153.

where two streamtubes are shown in the backward-facing-
step data set. The radius of the tubes is inversely propor-
tional to the square root of the local velocity magnitude, and
the colour of the tubes corresponds to the pressure.

If, instead of the separate selected points, the attributes
are used, that have been computed in the feature extraction
process, then parametric icons can be used for visualising
the features.

If an ellipsoid fitting of the selected clusters has been
computed, there are three attribute vectors: the centre po-
sition, the axis lengths, and the axis orientations, which can
be mapped onto the parameters of an ellipsoid icon. This is
a simple icon, but very efficient and accurate. It can be rep-
resented with 9 floating-point values, and is therefore space-
efficient. Furthermore, it can be very quickly visualised, and
although it is simple, it gives an accurate indication of the
position and volume of a feature. In Figure 21, an ellipsoid
fitting is computed from the selected points in Figure 19. In
Figure 22, vortices are shown from a CFD simulation with
turbulent vortex structures. The features have been selected
by a threshold on vorticity magnitude. They are being vi-
sualised with isosurfaces and ellipsoids. It is clearly visible
that, in this application, with the strongly curved features,
the ellipsoids do not give a good indication of the shape of
the features. But, as mentioned above, the position and vol-
ume attributes of the ellipsoids will be accurate, and can be
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Figure 21: An ellipsoid fitting computed from the selected
points in the backward-facing-step data set 114.

Figure 22: Vortices in a data set with turbulent vortex struc-
tures, visualised using isosurfaces and ellipsoids 97.

used for feature tracking. In Figure 23, the flow past a ta-
pered cylinder is shown. Streamlines indicate the flow di-
rection, and rotating streamlines indicate vortices. The vor-
tices are selected by locating these rotating streamlines, us-
ing the winding-angle method 112. Ellipsoids are used to vi-
sualise the vortices, with the colour indicating the rotational
direction. Green means clockwise rotation, red means coun-
terclockwise rotation. The slice is coloured with λ2, which
is the second-largest eigenvalue of the tensor S2 + Ω2. (See
Section 6.1.)

The tapered cylinder data set consists of a number of hor-
izontal slices, such as the one in Figure 23, but the vor-
tices are naturally three-dimensional structures. Reinders

Figure 23: Vortices behind a tapered cylinder. The colour of
the ellipsoids represents the rotational direction 112.

et al. created these vortex structures by performing fea-
ture tracking in a spatial dimension instead of tracking in
time 101. First, feature extraction was performed in the two-
dimensional slices. This resulted in two-dimensional vor-
tices, which were represented by a special type of ellipse
icon. Next, these 2D features were tracked in the z-direction,
forming 3D vortex structures. Figure 24 shows an image of
the resulting features. The 2D icons are ellipses with a num-
ber of curved spokes. The curvature of the spokes indicates
the rotational direction of the vortices, and the number of
spokes represents the rotational speed. The 3D icons are con-
structed by connecting the centre points of the 2D ellipses.

For the 3D vortices in Figure 22, an other type of icon has
to be used, if we want to visualise the strongly curved shape
of the features. Reinders et al. present the use of skeleton
graph descriptions for features, with which they can create
icons that accurately describe the topology of the features,
and approximately describe the shape of the features 98.
Compare the use of ellipsoid icons with the use of skeleton
icons in Figure 25.

For visualising the results of feature tracking, it is of
course essential to visualise the time dimension. The most
obvious way is to animate the features, and to give the user
the opportunity to browse through the time steps, both back-
ward and forward in time. Figure 26 shows the player from
the feature tracking program, developed by Reinders 100. On
the left of the figure, the graph viewer is shown, which gives
an abstract overview of the entire data set, with the time
steps on the horizontal axis, and the features represented by
nodes, on the vertical axis. The correspondences between
features from consecutive frames are represented by edges
in the graph, and therefore, the evolution of a feature in time,
is represented by a path in the graph. On the right of the fig-
ure, the feature viewer is shown, in which the feature icons
from the current frame are displayed. Also, a control panel
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Figure 25: Turbulent vortex structures represented by ellipsoid icons (left) and skeleton icons (right) 97.

is visible, with which the animation can be started, paused,
and played forward and backward.

The graph viewer can also be used for visualising
events 97. For each event, a specific icon has been created,
which is mapped onto the nodes of the graph, so that the
user can quickly see which events occur where, and how of-
ten they occur. In Figure 27, the graph viewer is shown, with
a part of the graph, containing a number of events. Each
event is clearly recognisable by its icon. In Figure 28, two
frames are shown, between which a split event has occurred.
In both frames, the features are shown with both ellipsoid
and skeleton icons. The advantage of the use of skeleton
icons in this application is obvious. Because the shape of the
features is much more accurately represented by the skeleton
icons, changes in shape and events such as these are much
more easily detected.

9. Conclusions and future prospects

A state-of-the-art report must end with an assessment: what
has been achieved in flow visualisation during the last 15
years? Have the problems been solved? Are the results ap-
plied in practice? What are the remaining challenges?

A large number of techniques has been developed and
refined. In general, which techniques are the best, depends
strongly on the purpose of the visualisation: the research
problems addressed, the methods and approaches used, and
the personal interest of the researcher or engineer. Users may
also have different purposes, such as exploration, detailed
analysis, or presentation. Therefore, we believe that a large
variety of techniques must be available to allow researchers
to choose the most suitable technique for their purpose. In
this sense, good progress has been made.

A very successful group is the texture-based techniques
(see Section 3), mainly used for 2D flows and surface flow
fields. They are very suitable for animation, both of station-
ary and time-dependent flows. Performance limitations seem
to be overcome 165, and interactive use with unsteady flows

is now feasible. However, generalisation to 3D flow fields is
still problematic. Techniques based on integration for gener-
ating geometries and particle animation (see Section 4) are
also very successful, and generalise better to 3D fields.

One of the original key problems in flow visualisation was
the direct visualisation of directional structures in a 3D field,
possibly varying in time. Despite some heroic attempts, this
problem has not been solved, as perceiving three spatial and
three data dimensions directly seems a very tough job for the
human eye and brain. At the same time, the scale of numer-
ical flow simulations, and thus the size of the resulting data
sets, continues to grow rapidly. For these reasons, simplifica-
tion strategies have to be conceived, such as spatial selection
(slicing, regions of interest), data dimension reduction, ge-
ometry simplification, and feature extraction.

Slicing in a 3D field reduces the problem to 2D, allowing
use of good 2D techniques, but care must be taken with in-
terpretation, as the loss of the third dimension may lead to
physically irrelevant results and wrong interpretation. Tak-
ing a single 3D time slice from a 3D time-dependent data
set has similar dangers. Other spatial selections such as 3D
region-of-interest selection are less risky, but may lead to
loss of context. Reduction of data dimension, such as re-
ducing vector quantities to scalars will give more freedom
of choice in visualisation techniques (such as using volume
rendering), but will not lead to much data reduction. Geom-
etry simplification techniques such as polygon mesh deci-
mation, levels-of-detail, or multiresolution techniques will
be effective in managing very large data sets and interactive
exploration, enabling users to trade accuracy with response
time.

Feature extraction (Section 5) is selection and simplifica-
tion based on content: extracting important high-level infor-
mation from a data set, visualising the data from a problem-
oriented point of view. This leads to a large reduction of the
data size, and to fully or semiautomatic generation of sim-
ple and clear images. The techniques are generally very spe-
cific for a certain type of problem (such as vortex detection),
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Figure 28: A split event, before (left) and after (right). The features are visualised with both an ellipsoid and a skeleton icon 97.

and the relation with the original raw data is indirect, and
the reduction is achieved at the cost of loss of other infor-
mation, which is considered irrelevant for the purpose. But
the techniques generalise well to analysis of time-dependent
data sets, leading to condensed episodic visual summaries.

A good possibility is combining feature extraction tech-
niques with direct or geometric techniques. For example, se-
lective visualisation has been used effectively with stream-
line generation, to place seed points in selected areas, and
show important structures with only a small number of
streamlines. Combining simple advection-based techniques
with iconic feature visualisation can also clarify the relation
between the raw data and the derived information used in
feature detection. The work of visualisation and simulation
experts will in the future become inseparable: the distinc-
tion between simulation and visualisation will be increas-
ingly blurred. A good example is the tracking of phase fronts
(separation between two different fluids in multifluid flows)
using level set methods 124, where the feature extraction is a
part of both simulation and visualisation.

How about practical application? Many techniques have
been incorporated in commercial visualisation systems, in-
cluding feature-based techniques †. The practical use of
flow visualisation is most effective when visualisation ex-
perts closely cooperate with fluid dynamics experts. This is
especially true in feature-based visualisation, where devel-
oping detection criteria is closely connected to the physi-
cal phenomena studied. But also other disciplines can con-
tribute to this computational science effort: mathematicians,
artists and designers, experimental scientists, image pro-
cessing specialists, and also perceptual and cognitive scien-
tists 96.

Some areas that need additional work are:

† http://www.ensight.com/products/flow-
feature.html

• comparative visualisation and multisource comparative
data analysis

• visualisation of multivariate flow fields with scalar, vector,
and tensor data

• handling and exploring huge time-dependent flow data
sets

• detection and tracking of new types of features, such
as surface features (shock waves, phase fronts) in time-
dependent data sets

• the use of virtual environments for visual data exploration
and computational steering: problems of performance and
3D interaction

• user studies for evaluation, validation, and field testing of
flow visualisation techniques

• visualisation of inaccuracy and uncertainty.

Overlooking the whole landscape of flow visualisation
techniques, we can say that visualisation of 2D flows has
reached a high level of perfection, and for 3D a rich set of
techniques is available. In the future, we will concentrate on
techniques that scale well with ever increasing data set sizes,
and therefore selection and simplification techniques will get
more attention.
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Figure 24: 3D Vortex structures behind a tapered cylin-
der 97.
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