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Abstract

Isosurfacing, by itself, is a common visualization technique for investigating 3D vector fields. Applying texture-
based flow visualization techniques to isosurfaces provides engineers with even more insight into the charac-
teristics of 3D vector fields. We apply a method for producing dense, texture-based representations of flow on
isosurfaces. It combines two well know scientific visualization techniques, namely iso-surfacing and texture-based
flow visualization, into a useful hybrid approach. The method is fast and can generate dense representations of
flow on isosurfaces with high spatio-temporal correlation at 60 frames per second. The method is applied in the
context of CFD simulation data, namely, the investigation of a common swirl flow pattern and the visualization of

blood flow.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation;
1.3.7 [Computer Graphics] Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture;

[Simulation and Modeling]: Simulation Output Analysis

1. Introduction

At the VRVis Research Center we collaborate with AVL in
order to provide visualization solutions for analysis of their
CFD simulation result data. AVL (www. avl . conj is an inter-
nationally recognized leader in providing automotive design
and CFD simulation solutions to its partners in the automo-
tive industry. AVL’s own engineers as well as engineers at
industry affiliates use visualization software to analyze and
evaluate the results of their automotive design and simula-
tion.

1.1. The Caseof Swirl Flow

For many of the automotive components that undergo evalu-
ation, there is an ideal pattern of flow the engineers are try-
ing to create. Figure 1 illustrates the swirl motion of fluid
flow in a combustion chamber from a diesel engine. In order
to generate swirl motion, fluid enters the combustion cham-
ber from the intake ports. Later on in the engine cycle, the
kinetic energy associated with this swirl motion is used to
generate turbulence for mixing of fresh oxygen into the fluid.
The more turbulence generated, the better the mixture of air
and diesel fuel, and thus the better the combustion itself. Ide-
ally, enough turbulent mixing is generated such that 100% of
the fuel is burned.
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Intake Ports

Figure 1. The swirling motion of flow in the combustion
chamber of a diesel engine (side view). The intake ports at
the top provide the tangential component of the flow neces-
sary for swirl.

Since it is the swirling flow that is used to generate turbu-
lence, the swirl should be maximized in order to maximize
turbulence. From the point of view of the mechanical engi-
neers designing the intake ports, increased swirl flow leads
to some beneficial conditions: (1) improved mixture prepara-
tion, .i.e., more fuel contact with oxygen, (2) a higher EGR
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(Exhaust Gas Ratio) which means a decrease of fuel con-
sumption, and (3) lower emissions. However, too much swirl
displaces the flame used to ignite the fuel. As such, a balance
must be achieved between (1) generating enough swirl flow
in order to create turbulence and (2) not displacing the flame
used to ignite the flow.

Some routine questions that a mechanical engineer may
ask when investigating swirl flow are: (1) Can visualization
provide insight into or verify the characteristic shape(s) or
behavior of the flow? (2) What tool(s) can help to visual-
ize the swirl flow pattern? and (3) Where in the combustion
chamber is the swirl flow pattern not being met?

1.2. Isosurfaces

Engineers often start an analysis of CFD simulation data us-
ing techniques to visualize the flow at the surface in order to
get a first impression of the simulation results. The next log-
ical step is to investigate the properties of the flow inside the
volume. Two-dimensional slices are commonly used, but vi-
sualizing 3D characteristics of the flow like swirl can be dif-
ficult with 2D slices. Engineers are interested in visualiza-
tion techniques that provide insight into the spatial dimen-
sion orthogonal to the slice as well.

Isosurfaces are a visualization tool used routinely by me-
chanical engineers to investigate the properties of the flow
inside a 3D volume. The shape of an isosurface can give the
engineer insight into its 3D characteristics. One reason en-
gineers use isosurfaces, as opposed to say streamsurfaces,
is because they are so common. They feel very comfortable
with isosurfaces because, like isolines, they are very famil-
iar. We even see isolines in our daily weather reports. The
mechanical engineers we spoke to are not as familiar with
the notion of a streamsurface and even less its interpretation.

Figure 2 shows an isosurface in the combustion chamber
of the data set in Figure 1. The engineer can see that the flow
has some of the swirling orientation that they are looking for.
However, what is missing from Figure 2 is a clear indication
of flow direction, e.g., the upstream and downstream nature
of the flow. In particular, it is not obvious where the flow
does not follow the ideal swirl pattern that the combustion
chamber should encapsulate.

1.3. Applying Texture-Based Flow Visualization

Applying texture-based flow visualization techniques to
such isosurfaces provides engineers even more insight into
the characteristics of 3D vector fields. And this has become
a feasible option only recently. We apply the method of
Laramee et al. [6] for producing dense, texture-based rep-
resentations of flow on isosurfaces. The result is a combi-
nation of two well know scientific visualization techniques,
namely iso-surfacing and texture-based flow visualization,
into a useful hybrid approach. Our application is a versatile
visualization technique with the following characteristics:

= 4

Figure 2: The swirling motion of flow in the combustion
chamber of a diesel engine (side view) as illustrated by an
isosurface. This is a velocity isosurface with an isovalue of
5.0 m/s. Any CFD attribute can be mapped to hue.

e generates a dense representation of flow on adaptive reso-
lution isosurfaces

e Vvisualizes flow on complex isosurfaces composed of poly-
gons whose number is on the order of 200,000 or more

o visualizes flow independent of the isosurface mesh’s com-
plexity and resolution

e supports user-interaction such as rotation, translation, and
zooming always maintaining a constant, high spatial res-
olution

e produces fast animations, realizing up to 60 frames per
second

The performance is due, among other reasons, to the ex-
ploitation of graphics hardware features and utilization of
frame-to-frame coherency. We note that the method must be
applicable to adaptive resolution isosurfaces like that of Fig-
ure 3. Note that many of the polygons in Figure 3 cover less
than one pixel. The isosurface algorithm used here is an ex-
tension of the Marching Cubes [7] and Marching Tetrahe-
dra [13] algorithms that takes into account more cell types.
It handles adaptive resolution meshes in the same spirit as
Laramee and Bergeron [5].

The rest of the paper is organized as follows: in Section 2
we discuss related work, Section 3 reviews the research that
the work here is built upon. Section 4 details texture-based
flow visualization on isosurfaces from CFD. Results and
conclusions, including a discussion of the user questions, are
presented in Section 5.
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Figure 3: A close-up, wire-frame view of the isosurface from
Figure 2. The algorithm we describe must be applicable to
adaptive resolution isosurface meshes.

2. Related Work

The dense, texture-based category of fluid flow visualiza-
tion techniques generally started out with Spot Noise [14]
and LIC [2]. The main advantage of the texture-based class
of algorithms is their complete depiction of the flow field
while their primary drawback is, in general, the computa-
tional time required to produce the results.

2.1. Previous Work with Surfaces

Previous research with a focus on representations of the
vector field on boundary surfaces is generally restricted to
steady-state flow on simple boundary geometries such as
spheres. This is mainly due to the prohibitive computational
time required. An enhanced version of Spot Noise is applied
to surfaces by De Leeuw and Van Wijk [3].

Some approaches are limited to curvilinear surfaces. Fors-
sell and Cohen [4] extend LIC to curvilinear surfaces with
animation techniques and add magnitude and directional in-
formation. Stalling [12] provides a helpful overview of LIC
techniques applied to surfaces. In particular, a useful com-
parison of parameterized vs. non-parameterized surfaces is
given. However, isosurfaces, like those generated by the
Marching Cubes algorithm [7] are not, in general, param-
eterizable.

Battke et al. [1] describe an extension of LIC for arbitrary
surfaces in 3D. The method works by tessellating a given
surface with triangles. The triangles are packed (or tiled)
into texture memory and a local LIC texture is computed
for each triangle. The results are limited to relatively small,
(1,600-4,000 polygons) simple surfaces composed of equi-
lateral triangles however. Furthermore, the reported compu-
tation times are on the order of one minute.

submitted to Joint EUROGRAPHICS - |EEE TCVG Symposium on Visualization (2004)

Mao et al. [8] extend LIC for visualizing a vector field
on an arbitrary surface in 3D. The convolution of a 3D
white noise image, with filter kernels defined along the lo-
cal streamlines, is performed only at visible ray-surface in-
tersections. However, ray tracing is, in general, costly. The
results presented there required 6 minutes of processing time
for a surface mesh composed of 10,000 triangles.

Our review of the literature [9, 10] indicates that only
recently have dense, texture-based flow visualization tech-
niques on surfaces become more feasible. Perhaps this is
one reason why we have not seen them applied to isosur-
faces. Laramee et al. [6] and Van Wijk [15] both present
texture-based flow visualization for boundary surfaces. In
both methods, texture is advected in the direction of the flow
at fast frame rates. Also, both methods are suited for the vi-
sualization of unsteady flow on surfaces. The application we
present here builds on the work of Laramee et al. [6]. In what
follows, we describe why this method is well suited for the
case of isosurfaces and discuss how it can be useful.

3. Method Background

In order to understand how and why we apply texture-
based flow visualization to isosurfaces, we briefly outline
the method background. In brief, the algorithm presented
by Laramee et al. [6] simplifies the problem by confining
the advection of texture properties to image space. The sur-
face geometry is projected to image space and then a se-
ries of textures are mapped, blended, and advected. This or-
der of operations eliminates portions of the surface hidden
from the viewer. In short, the previous method for visual-
ization of flow on surfaces is comprised of the procedure
depicted schematically in Figures 4 and 5. Each step of the
pipeline is necessary for the dynamic cases of changes to
the isovalue, time-dependent geometry, rotation, translation,
and scaling, and only a subset is needed for the static cases
involving no changes to the view-point or isovalue. We con-
sider these stages in briefly in the sections that follow. They
are described in more detail in previous research [6].

3.1. Vector Field Projection

We start with a given surface with the 3D velocity data stored
at the vertices of the polygons. In order to advect texture
properties in image space, the vector field associated with
the surface is projected to the image plane. The method here
takes advantage of the graphics hardware. A color whose
R, G, and B values encode the X, y, and z components of
the local vectors is assigned to each vertex of the surface
respectively. The velocity-colored geometry is rendered to
the framebuffer. The term velocity image, Figure 5 top, left,
is used to describe the result of encoding the velocity vectors
at the mesh vertices into color values. The velocity image
is interpreted as the vector field and is used for the texture
advection in image space.

During the construction of the velocity image, Gouraud
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Figure 4: Flow diagram of texture-based flow visualization
on complex surfaces -k represents time as a frame number.

Figure5: The 5 conceptual stages, plus a 6! composite im-
age, used for the visualization of surface flow on a ring:
(top, left) the velocity image, (top, middle) the geometric
edge boundaries, (top, right) the advected and blended tex-
tures, (bottom, left) a sample noise image, (bottom, middle)
an image overlay, (bottom, right) the result of the compos-
ited images with an optional color map. The geometric edge
boundaries are drawn in black for illustration.

Shading, also supported by the graphics hardware, is en-
abled. Since each velocity component is stored as hue at
each polygon vertex of the surface, the smooth interpola-
tion of hue amounts to hardware-assisted vector field recon-
struction. The de-coded velocity vectors used to compute the
advection mesh (Sec 3.2) are then projected onto the image
plane.

3.2. Advection Mesh Computation and Image
Advection

After the projection of the vector field the mesh used to ad-
vect the textures is computed. A regular, rectilinear mesh is

distorted according to the velocity vectors stored at mesh
grid intersections. The distorted mesh vertices can then be
computed by backward advecting each mesh grid intersec-
tion according to a discretized Euler approximation of a
pathline, p,

Py_1= pk—vp(pk_l;t)At 1)

where vP represents a magnitude and direction after projec-
tion to the image plane and k represents time as a frame
number. In this case the texture coordinates located at the
backward distorted mesh positions are mapped to the regu-
lar, rectilinear mesh vertices.

3.3. Edge Detection and Blending

While many advantages are gained by decoupling the image
advection process from the 3D surface geometry, artifacts
can result, especially in the case of geometries with sharp
edges. For example a portion of the 3D geometry can be
much less visible after the projection onto the image plane
and can even look like an edge. If the flow texture properties
are advected across such an edge in image space an artificial
continuity can result. A geometric edge detection process is
incorporated into the algorithm in order to handle this (de-
picted schematically in Figures 4 and 5 top, middle).

During the image integration computation, we compare
spatially adjacent depth values during one integration and
advection step. We compare the associated depth values,
Z,_, and z, in world space of p,_, and p, from equation 1,
respectively. If

21 =7l > €- 1P — Pyl )

where ¢ is a threshold value, then we identify an edge. All
positions, p, for which equation 2 is true, are classified as
edge crossing start points. Special treatment must be given
when advecting texture properties from these points.

3.4. NoiseBlending

By reducing the image generation process back to two di-
mensions, the noise injection and blending phase (Figure 5
top, right) falls in line with the original IBFV technique, [15]
namely, an image, F, is related to a previous image, G, by:
k—1 i
F(p:k):a_%(l—a)'G(pk_i:k—i) ®3)
=l
where p represents a pathline, a defines a blending coeffi-
cient. Thus a point, p,, of an image F,, is the result of a
convolution of a series of previous images, G(x;i), along
the pathline through p,, with an decay filter defined by
a(l—a).

3.5. Image Overlay Application

The rendering of the advected image and the noise blend-
ing may be followed by an optional image overlay. An over-
lay enhances the resulting texture-based representation of
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surface flow by applying color, shading, or any attribute
mapped to color (Figure. 5, bottom, middle). The overlay
is constructed once for each static scene and applied af-
ter the image advection, edge blending, and noise blending
phases. Since the image advection exploits frame-to-frame
coherency, the overlay must be applied after the advection in
order to prevent the surface itself from being smeared.

4. Texture-Based Flow Visualization on | sosurfaces

Here we describe the way in which we apply the method de-
scribed in Section 3 to isosurfaces. Specifically, we describe
ways to address: (1) the normal component of the flow to the
isosurface, (2) perceptual challenges associated with view-
ing flow on isosurfaces, (3) issues related to resampling the
vector field, and (4) some implementation details.

4.1. Applying a Normal Mask

When visualizing flow on normal boundary surfaces like the
ring in Figure 5 bottom, right, the direction of the flow gener-
ally coincides with the surface itself. As the flow approaches
the boundary, it is not allowed to pass through and is pushed
in a tangential direction, i.e., it can be described as surface
aligned flow. However, in the case of isosurfaces this is no
longer true. The flow at an isosurface can sometimes exhibit
a strong flow that is normal to the surface, e.g., cross-surface
flow. The same also holds true for the case of arbitrary
clipping geometries such as those used by Rezk-Salama et
al. [11] Simply advecting texture properties according to the
vector field projected onto the isosurface could be consid-
ered misleading. Is there a way in which this cross-surface
component of the flow can be incorporated into the result
visualization?

Battke et al [1], who applied LIC to surfaces, address this
problem by varying the length of the convolution filter ac-
cording to the magnitude of the vector component tangential
to the surface. In areas where the vector field is oriented al-
most perpendicular to the surface only very little smearing
of the texture occurs, i.e., the input noise is visible instead
of a convolved texture. Our approach is required to be con-
sistent with the visualization of flow on boundary surfaces.
When we apply texture-based flow visualization to boundary
surfaces, the amount of texture-smearing indicates velocity
magnitude, i.e., texture is smeared into longer streaks in ar-
eas of higher velocity magnitude. We don’t want to change
the semantic interpretation of smearing for isosurfaces.

\We propose an idea inspired by the well known velocity
mask, namely, a normal mask. A velocity mask can be used
to dim or highlight high frequency noise in low velocity re-
gions. Whereas, a normal mask can be used to dim regions of
the vector field that have strong cross-flow component to the
isosurface. We propose the following to define the normal
mask:

a=(@n)" (4)
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where a increases as a function of the product of the veloc-
ity, v, and normal vector to the surface, n, at that point. Here,
m is an arbitrary number. In practice, it is typically around
unity giving the opacity a nearly linear behavior. In our case,
the image overlay (Figure 5 bottom, middle) becomes more
opaque in regions with a strong cross-flow component and
more transparent in areas of highly tangential velocity. With
the normal mask enabled, the viewer’s attention is drawn
away from areas of strong cross-flow component, and to-
wards areas of high tangential velocity. Note however, that
the texture properties are still advected according the veloc-
ity vectors projected onto the isosurface.

The result of applying a normal mask to the ring surface
from Figure 5 is shown in Figure 6. The inlet area where the
flow is generally orthogonal to the surface has a high opacity
covering up the high spatial frequency texture. Note that if
we encode the normal mask as opacity, another simulation
attribute can be mapped to hue. In our application this is a
requirement for consistency.

Figure 6: The result of applying a higher contrast normal
mask to the ring from Figure 5. The texture is no longer vis-
ible at the inlet of the ring where the texture reflects the flow
orthogonal to the surface.

4.2. Normal Mask Implementation

We can integrate the implementation of the normal mask
with very little overhead by taking advantage of the graphics
hardware. If we look closely at the construction of the veloc-
ity image in Section 3.1 we note that the the R, G, and B im-
age channels are used to encode the x, y, and z values of the
vector components at each vertex defining the surface. This
leaves the alpha channel as a free parameter in the velocity
image construction. In order to implement the normal mask,
we simply store the result of v-n into the alpha channel when
rendering the velocity image, at the same time we are storing
the X, y, and z vector components. And when reading back
the image buffer, reading the alpha component in addition
to the R, G, and B component comes at very little overhead.
Some results of applying this normal mask to an isosurface
are shown in Figure 7. We can see that the flow at the isosur-
face just below the intake port in the foreground (in white)
has a strong normal component to the isosurface. The higher
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Figure 7: From left to right: (left) a velocity isosurface of value 5.0 m/s with a CFD simulation attribute mapped to hue,
(middle) texture-based flow visualization on the isosurface (right) texture-based flow visualization on the isosurface combined

with a normal mask. A close-up is shown in Figure 8.

frequency texture in this region is difficult to see. Figure 8
shows a close-up of Figure 7 for increased clarity of expo-
sition. Note also that we have chosen a simpler color scale
in this case to reduce the visual complexity of the result. We
find that using using a full range of hue for the color map-
ping (like in Figure 2) in combination with variable opacity
for the normal mask is visually complex. So we provide the
option of trading off some complexity in the color map for
including the normal mask.

4.3. Perceptual Issues

Figure 9, top, shows a close-up view of a velocity isosur-
face with texture-based flow visualization applied. One per-
ceptual problem with the result is that of occlusion. There
is more structure to this isosurface than we can see. Per-
ceptual problems such as occlusion and visual complexity
are common to generally all 3D visualizations. One way we
addressed this is by implementing an interactive clipping
plane.

The clipping plane allows the user to see occluded parts
of the isosurface by removing sub-sets of the geometry on
one side of the plane, in this example, the side closer to the
viewer. Again, the users are interested in cutting planes be-
cause of their familiarity. Figure 9, bottom, shows another
view of the isosurface with a clipping plane being used. New
structures in the isosurface are revealed, namely the structure
resulting from flow around an intake port valve.

Of course another alternative is for the engineer to take a
2D slice through the volume, rather than creating an isosur-

face. This is essentially trading off dimensionality in order
to reduce perceptual problems. In our application, the user
has both options.

Another option for the user in our application is the use of
arbitrary clipping geometries. For example, the user can de-
fine a clipping geometry in the shape of a sphere or cylinder
and apply the texture-based flow visualization. Again how-
ever, this is a trade-off. We may gain by lowering visual com-
plexity and occlusion, but we lose some information about
the behavior of the flow, namely, that visualized by the iso-
surface.

4.4. A Resampling Point of View

One reason this texture-advection method is faster than pre-
vious texture-based methods on surfaces is because the in-
jection, blending, and advection of noise textures is done in
image space. The key to transforming the three-dimensional
nature of textures on surfaces to a two-dimensional problem
is via the projection of the vector field to image space, as
illustrated in Figure 10.

The vector field from the isosurface is projected onto im-
age space via the velocity image described in Section 3.1.
Then, the image is warped according to a regular, rectilinear
mesh as described in Section 3.2 and illustrated on the right
in Figure 10. By distorting the image according the projected
velocity vectors located at the grid intersections, we are im-
plicitly resampling the vector field. This resampling implies
some consequences. Unlike the nature of boundary surfaces,
isosurfaces may contain very small, disconnected pieces. In
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Figure 8: A close-up of the isosurface from Figure 7: (top)
texture-based flow visualization on the isosurface (bottom)
texture-based flow visualization on the isosurface combined
with a normal mask.

some cases these pieces may only cover a few pixels. This
implies that we need a high vector field resampling rate when
advecting the textures in image space. In other words, the
sampling to pixel ratio should be small, e.g., sampling at ev-
ery pixel or every other pixel. In order to handle this, we give
the user the option of different advection grid resolutions. In
our implementation, the highest grid resolution samples the
vector field at every pixel, while the second highest advec-
tion grid resolution samples the vector field at every other
pixel.

Another reason we give the user control over the reso-
lution of the advection grid is because we want to retain the
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Figure 9: (top) a close-up of a velocity isosurface of value
5.0 m/s with no clipping plane (bottom) the same isosurface
shown using a clipping plane tangent to the view-point in
order to reveal occluded isosurface structures

advantages obtained by decoupling the original surface mesh
with the mesh used to advect the textures. This decoupling
prevents computation on those polygons whose area covers
less than one pixel. And in the case of Figure 3 there are
thousands of such polygons. We note also that zooming in on
a surface implicitly increases the sampling rate of the vector
field because more of the image is spread out while the res-
olution of the advection grid at the same time remains the
same.

The fact that an isosurface may contain many small, dis-
connected pieces also implies that we need a high frequency
texture in the spatial domain. In our implementation, we give
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Figure 10: Image space based flow visualization from a re-
sampling point of view. Setting up a regular, rectilinear ad-
vection grid in image space (right) implies a vector field re-
sampling process. The advection mesh shown here is of very
coarse resolution for illustration.

the user control over the spatial frequency of the noise in-
jection. Some samples of these spatial frequencies are illus-
trated in Figure 11. Using a high spatial frequency allows for
the visualization of flow on even very small, disconnected
pieces of an isosurface.

Figure11: Different spatial frequency noise that can be used
in the noise injection and advection process: Small, discon-
nected pieces of an isosurface imply that a high spatial fre-
quency noise should be used.

5. Resultsand Discussion

If we take a closer look at Figures 8 and 9, we can see that
the texture-based flow visualization provides additional in-
sight into the behavior of the flow. One of the questions that
the engineer poses is: Where in the volume is the ideal swirl
flow pattern not being met? Within the texture, we can see
that the ideal swirl flow pattern is not being met in just below
the intake ports themselves. Namely, we can see that two ar-
eas of the flow are working against each other just beneath
the actual boundary surface of the combustion chamber. This
is shown more clearly in a close-up in Figure 12. The nor-
mal mask in Figure 12 highlights the boundary between this
destructive flow pattern. This is contrasted with only the iso-
surface itself (Figure 2) where area destructive flow is not

Figure 12: A close-up of a velocity isosurface of value 5.0
m/s with texture-based flow visualization and a normal mask
applied. With the texture advection on the isosurface, it is
clear that the ideal swirl flow pattern is not exhibited in this
region.

obvious. The destructive flow pattern is made even more ob-
vious in an animation of the flow. T

Figure 13 shows the isosurface from a top point of view.
In this view, it is clear that much of the flow is consistent
with the swirl flow pattern. Again, this is even clearer when
watching an animated sequence of the visualization result.

Figure 14, top, shows the intersection of three blood ves-
sels. The larger vessel on the right brings in blood and dis-
tributes it to two small vessels on the left. An abnormal
pocket, e.g., an aneurysm, has developed at the junction of
the three vessels. The observer may be interested to investi-
gate the inside of the pocket to see the resulting blood flow
pattern. If we look at the blood flow at the surface, as in Fig-
ure 14, top, we see mostly noise. The velocity of the blood
flow at the surface of the pocket is moving very slow relative
to the vessel surfaces.

Figure 14, bottom, shows a velocity isosurface (of 0.04
m/s) inside the volume with texture-based flow visualiza-
tion applied. Shown clearly is the recirculation zone in the
pocket with blood flowing upstream (in the opposing direc-
tion). This second example was chosen in an effort to sup-
port our claim that the hybrid approach of texture-based flow

T Supplementary MPEG animations and images of the results can
be found at:
http://ww. vrvis. at/ar 3/ pr2/ Vi sSynD4/
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Figure 13: A view from the top of the velocity isosurface of
value 5.0 m/s with texture-based flow visualization applied.
From this view, it appears as if most of the flow is consistent
with the swirl flow pattern.

visualization on isosurfaces can be useful, not only in the au-
tomotive domain.

6. Performance

Performance was evaluated on a PC with an Nvidia 980XGL
Quadro graphics card, with a 2.8 GHz dual-processor and
1 GB of RAM. The performance times reported in Table 1
support interactive exploration of flow on isosurfaces. This is
important for the case of changing isovalues. When the user
changes the isovalue, texture updates only require a fraction
of a second. And the transition is generally coherent because
each frame is blended with the previous frame as described
in Section 3.4.

The first time reported in the FPS column is for the static
case, i.e., the absence of changes to the view point. The
times shown in parenthesis indicate the dynamic cases of
interactive zooming, rotation, and translation of the view
point. More specifically, the dynamic cases require the con-
struction of a velocity image, image overlay, as well as ge-
ometric edge detection. The reported times are about three
times faster than those reported by Laramee et al. [6]. This
is mainly due to the updated hardware used for the evalua-
tion and some small improvements to the implementation.

The performance time of the algorithm depends on the
resolution of the mesh used to perform the advection and the
number of polygons in the original isosurface mesh. In the
static case, the algorithm no longer depends on the number
of polygons in the surface mesh, but on the area covered in
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Figure 14: (top) the intersection of three blood vessels. An
abnormal pocket has formed at the junction. (bottom) a ve-
locity isosurface of value 0.04 m/s with texture-based flow
visualization applied. The recirculation zone where blood
flows in the opposing direction becomes clear.

num. polygons  advection mesh res. FPS

10K 642 64 (35)
1287 64 (18)
256° 32(8)
5122 15 (2.3)

48K 642 64 (13)
1287 64 (10)
2567 32 (6)
5127 15 (2)

221K 642 64 (4)
1287 64 (4)
2567 32(2.9)
5127 13 (1.5)

Table 1: Sample frame rates for the visualization algorithm.

image space and the resolution of the advection mesh. In
all the performance numbers given in Table 1 approximately
75% of image space is covered. We recommend that the user
explore the data with a lower resolution advection mesh and
then increase the resolution when higher accuracy analysis
or presentation is required.

Normal mask construction does not introduce significant
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overhead since it is easily built into the advection process it-
self. For example, the isosurface shown in Figures 12 and 13
is composed of 243K polygons. In the static case, the nor-
mal mask has no effect on frame rates. They are the same as
those listed in Table 1. In the dynamic case using a 1282 ad-
vection mesh, the frame rate drops from 3.3 to 3.0 FPS with
the addition of the normal mask.

7. Conclusions and Future Work

We have shown how the image space based texture-
advection technique of Laramee et al. [6] can be applied
to isosurfaces. Isosurfaces provide information into the 3D
characteristics of flow that 2D slices and boundary surfaces
alone cannot. We have shown that adding the texture-based
representation of flow to isosurfaces can give the engineer
new insight into the behaviour of swirl flow when examin-
ing CFD simulation data. We have also applied the method
to the visualization of blood flow. Furthermore, the method
is fast and supports user interaction such as zooming, rota-
tion, and translation.

Future work can go in many directions including vi-
sualization of texture-based flow visualization on time-
dependent isosurfaces, streamsurfaces, and unsteady 3D
flow. Challenges will include both interactive performance
time and perceptual issues. Future work also includes the ap-
plication of more specialized programmable graphics hard-
ware features in the manner of Weiskopf et al. [16, 17]
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also thank Jarke van Wijk for his encouraging dialog and
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