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ISA and IBFVS: Image Space Based Visualization
of Flow on Surfaces

Robert S. Laramee, Jarke J. van Wijk, Bruno Jobard, and Helwig Hauser

Abstract— We present a side-by-side analysis of two recent
image space approaches for the visualization of vector fields on
surfaces. The two methods, Image Space Advection (ISA) and
Image Based Flow Visualization for Curved Surfaces (IBFVS)
generate dense representations of time-dependent vector fields
with high spatio-temporal correlation. While the 3D vector fields
are associated with arbitrary surfaces represented by triangular
meshes, the generation and advection of texture properties is
confined to image space. Fast frame rates are achieved by
exploiting frame-to-frame coherency and graphics hardware. In
our comparison of ISA and IBFVS we point out the strengths
and weaknesses of each approach and give recommendations as
to when and where they are best applied.

Index Terms— Unsteady flow visualization, computational fluid
dynamics (CFD), surface representation, surface rendering, tex-
ture mapping

I. INTRODUCTION

UNTIL recently, dense, texture-based, unsteady flow vi-
sualization on surfaces has remained an elusive prob-

lem since the introduction of texture-based flow visualization
algorithms themselves. The class of fluid flow visualization
techniques that generate dense representations based on tex-
tures started with Spot Noise [25] and LIC [3] in the early
1990s. The main advantage of this class of algorithms is their
complete depiction of the flow field while their drawbacks are,
in general, the computational time required to generate the
results, lack of flow orientation (upstream vs. downstream),
and applicability to 3D flow. Two new algorithms, namely,
those introduced by Laramee et al. [14] (named here as
ISA, Image Space Advection) and IBFVS (Image Based
Flow Visualization for Curved Surfaces) by Van Wijk [27]
have recently been introduced and overcome the computation
time hurdle by generating a dense representation of flow on
surfaces at fast frame rates, even for unsteady flow. ISA
and IBFVS generate dense representations of fluid flow on
complex surfaces without relying on a parameterization, e.g.,
Figure 1. Traditional visualization of boundary flow using
texture mapping first maps one or more 2D textures to a
surface geometry defined in 3D space. The textured geometry
is then rendered to image space [24]. Here, we alter this classic
order of operations. First we project the surface geometry
and its associated vector field to image space and then apply
texturing. In other words, while conceptually texture properties
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Fig. 1. ISA and IBFVS applied to the flow simulation data at the surface
of two intake ports side by side: ISA with the white background and IBFVS
with the gray background.

are advected on boundary surfaces in 3D, in fact the algorithms
realize texture advection in image space. In particular, the
methods have the following characteristics: They (1) generate
a dense representation of unsteady flow on surfaces (Figure 1),
(2) visualize flow on complex surfaces composed of polygons
whose number is on the order of 250,000 or more, (3)
can handle arbitrary, complex meshes without relying on a
parametrization, (4) support user-interaction such as rotation,
translation, and zooming while maintaining a constant, high
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spatial resolution, (5) deliver high performance, i.e., several
frames per second, and (6) visualize flow on dynamic meshes
with time-dependent geometry and topology.

We present a framework that both unifies and compares ISA
and IBFVS. We identify where the two approaches overlap
as well as where they separate and discuss the resulting
consequences. We also offer our perspectives on when ISA
and IBFVS are best applied and why. The rest of the paper
is organized as follows: In Section III we provide a joint
model for ISA and IBFVS. Section IV presents a side-by-side
comparison of the algorithms and the resulting overlapping
as well as divergent components of their implementations.
Section V provides applications of the techniques while Sec-
tions VI and VII compare the relative performance and image
quality of ISA and IBFVS and give some guidelines with
respect to when to apply the algorithms. Finally, Section VIII
draws some conclusions and outlines future work.

II. RELATED WORK

Our work focuses on texture-based representations of unsteady
flow on complex, non-parameterized surfaces. The challenge
of visualizing time-dependent vector fields on surfaces at
fast frame rates remains unsolved in surveys of the research
literature [13], [21], [24]. However, several techniques have
been proposed to successfully resolve parts of the problem.
In the next two sections we describe the two main categories
of approaches for dense representations on surfaces and dense
representations of unsteady 2D vector fields.

A. Texture-Based Flow Visualization on Surfaces: Object
Space Approaches

Previous research with a focus on representations of the vector
field on boundary surfaces is generally restricted to steady-
state flow. This is mainly due to the prohibitive computational
time required. These techniques generally use an object space
approach of generating a dense representation of the flow.

Some approaches are limited to curvilinear surfaces, i.e.,
surfaces that can be parameterized using 2D coordinates. The
original Spot Noise paper [25] showed how flow aligned
texture can be generated on parametric surfaces. Forssell and
Cohen [6] extended LIC to curvilinear surfaces with animation
techniques and added magnitude and directional information.
Battke et al. [1] described an extension of LIC for arbitrary
surfaces in 3D. Mao et al. [18] presented an algorithm for
convolving solid white noise on triangle meshes in 3D space
and extended LIC for visualizing a vector field on arbitrary
surfaces in 3D. Stalling provided a helpful overview of LIC
techniques applied to surfaces [24] in 1997. In particular,
a useful comparison of parameterized vs. non-parameterized
surfaces is given.

B. 2D, Unsteady Flow

Much work has been done in order to speed up texture-based
flow visualization in 2D. Cabral and Leedom [2] present a
parallel processing implementation of LIC. Max and Becker
were early to introduce the idea of moving textures in order

to visualize vector fields [19]. Heidrich et al. [8] exploit pixel
textures to accelerate LIC computation.

Jobard et al. introduced a Lagrangian-Eulerian texture ad-
vection technique for 2D vector fields at interactive frame
rates [11], [12]. The algorithm produces animations with high
spatio-temporal correlation. Each still frame depicts the instan-
taneous structure of the flow, whereas an animated sequence
of frames reveals the motion of a dense collection of particles
as if released into the flow. Particle paths are integrated as
a function of time, referred to as the Lagrangian step, while
the color distribution of the image pixels is updated in place
(Eulerian step).

Image Based Flow Visualization (IBFV) by Van Wijk [26]
is one of the most recent algorithms for synthesizing dense,
2D, unsteady vector field representations. It is based on the
advection and decay of textures in 2D. Each frame of the
visualization is defined as a blend between the previous image,
distorted according to the flow direction, and a number of
background images composed of filtered white noise textures.
Fast performance times are achieved through effective use of
the graphics hardware.

III. METHOD BACKGROUND

Before we describe visualization on surfaces, we present
the framework upon which ISA and IBFVS are built, with
emphasis on the synthesis of dense textures in two dimensions.
More details are given by Van Wijk [26].

A. Texture Synthesis in 2D

Suppose we have an unsteady, two-dimensional vector field����������	�

��� with����������	���� ����������������	����� �������������	"! (1)

defined for �$#&% , �'
)( , and (+*,�-� . A pathline is the path
of a massless particle, advected by the flow over time. Such
a pathline, . ����	 , is the solution of the differential equation/ . ����	�0 / ���1��� . ����	2����	 (2)

for a given start position . �3%4	 . A first-order Euler approxima-
tion of . ����	 is .65 � .�587:9�; ��� .�587<9 ����	�=>� (3)

with ? 
A@ and �B� ? =>� . We use the frame number ? to
denote time. Consider a field C ����� ? 	 that represents some
property advected by the flow. Here C represents an image,
hence C ����� ? 	 is typically an RGB-tuple. The property is
advected just like a particle, so a first-order approximation
of the transport of C can be given by:C � .�5 � ? 	D�FE C � .6587:9 � ?>GAH 	 if .65I7<9 
J(% otherwise

(4)

Eventually, some or even all of C ����� ? 	 will likely disappear
since it may eventually be advected beyond the spatial bound-
aries of the domain. Hence, at each time step a combination
of C and another image K is taken:C � .�5 � ? 	D��� HLG'M 	 C � .6587:9 � ?>GAH 	 ;,MNK � .65 � ? 	 (5)
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where the points .D5 are defined by equation (3), and whereM � M ����� ? 	O
P� %Q� H ! defines a blending mask. A typical
value for M is 10–20% of the total opacity. Equation 5 defines
the image generation process. By varying K many different
visualization methods can be emulated. To produce dense
textures an interpolated grid with random values is used, i.e.,K ����� ? 	��+RTS�U V�WN� � X G'Y 	�WN� � X GJZ 	 K S�U V\[ 5 (6)

where

X
is a parameter that controls the spatial frequency

of the texture and where W����]	 is a triangular pulse WN���]	^�_
`a�N�3%Q� H
Gcb � b 	 . A typical value for the texture scale is
anywhere from 1–10 pixels in the spatial domain. The instan-
taneous grid values K S�U V\[ 5 are defined byK S�U V\[ 5 �1de���gf ?h;Ai S�U V 	 (7)

To each grid point a random phase i S�U V is assigned. The value
of K S�U V\[ 5 cycles according to some periodic function de����	 , for
instance a square wave or a saw tooth. The term �jf denotes
the rate of image change.

The preceding equations can be mapped directly to standard
graphics operations, leading to a fast algorithm. The flow field
is represented by a rectangular or triangular mesh. First, the
mesh is distorted and rendered, using the preceding image as a
texture map. Second, fresh ink (or noise) is added by blending
in a polygon, texture mapped with a scaled, interpolated, pre-
computed pattern. Third, the image is stored in texture memory
for the next round. Finally additional graphics are rendered and
the resulting image is shown to the user.

B. Texture Synthesis for Surfaces

Next we consider the dense visualization of flow on surfaces:
ISA and IBFVS. Both techniques use a triangular mesh as
a geometric representation for boundary surfaces. Suppose
that for each vertex Y its position k S � ��l S �m��l S  n��l Spo 	 , a
normal vector q S �r��s S ����s S  t��s Suo 	 , and a velocity vector� S �v��� S � ��� S  ��� Suo 	 is given. Typically, this velocity is a
sample of a 3D flow field. For simplicity we assume that this
velocity is confined to the surface (possibly by projection),
i.e., � S�w q S �x% . For the models from CFD, what is depicted
is the vector field just under the surface, extrapolated. The
more general case is discussed by Laramee et al. [15] and
Van Wijk [27].

Given a model, viewing, and perspective transformation, the
mesh can be projected on the screen. We denote this by �zy]�{ ����	 , where �:y is a 2D point on the screen and where

{
denotes the perspective transformation. We use apostrophes
to denote projected quantities throughout the paper. One key
to ISA and IBFVS is the simple observation that when some
property is defined and advected on a surface in 3D space,
equation 4 also holds after projection of this surface to the
image plane, i.e.,C � . y 5 � ? 	D� E C � . y 5I7<9 � ?|G}H 	 if . y 587<9 
)( y% otherwise

(8)

where (�y is the projection of the surface onto the imageC , and where we assume that pathline . is visible. We use

Fig. 2. A wire frame view of the surface of two intake ports showing its
221,000 polygonal composition: (left) an overview from the top, note that
many polygons are cover less than one pixel (right) a close-up view of the
mesh between the two intake ports.

this to define a process for the synthesis of flow texture on
surfaces. Two further aspects must be addressed. Firstly, fresh
ink should be added only to the projection of the surface and
not to the background. Secondly, a shaded image C�~ ���u� ? 	 has
to be blended in. For this, we use a separate texture imageCN� ���p� ? 	 , which is defined on exactly the same space as the
image C itself, i.e., texture space coincides with image space.
The process can now be defined as follows:C�� � . y 5 � ? 	D��� HLG�� � . y 5 	�	 CN� � . y 587<9 � ?>G}H 	 ;� � . y 5 	 K � . y 5 � ? 	 (9)C ��� y � ? 	D�1� C�� ��� y � ? 	 ; � H�G �N	 C ~ ��� y � ? 	 (10)

where � denotes the strength of the texture with respect to the
shading, and where � is introduced to constrain the fresh inkK to the projected surface. Its value is defined by� ��� y 	D��E M ���:y�	 if �:y:
J(�y% otherwise

(11)

where M is defined above.

IV. ISA AND IBFVS

In this section we describe ISA and IBFVS in detail, starting
with a discussion of why we chose an image space approach.

A. Parameter Space vs. Object Space vs. Image Space

One approach to advecting texture properties on surfaces
is via the use of a parameterization, a topic that has been
studied in depth, e.g., by Gorla et al. [7] or Levy et al. [16].
According to Stalling [24], applying LIC to surfaces becomes
particularly easy when the whole surface can be parameterized
globally in two dimensions, e.g., in the manner of Forssell and
Cohen [5], [6]. However, there are drawbacks to this approach.
Texture distortions are introduced by the mapping between
parameter space and physical space and, more importantly,
for a large number of surfaces, no global parameterization is
available, such as isosurfaces from marching cubes [17] and
most unstructured surface meshes used for CFD simulations.
Figures 1 and 2 are a examples of surfaces for which a global
parameterization is not easily derived.

Another approach to advecting texture properties on sur-
faces would be to immerse the mesh into a 3D texture. Then
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the texture properties could be advected directly according to
the 3D vector field [22]. This would have the advantage of
simplifying the mapping between texture and physical space
and would result in no distortion of the texture. However, this
visualization would be limited to the maximum resolution of
the 3D texture, thus causing problems with zooming. Also,
this approach would not be very efficient in that most of the
texels are not used. Finally, the amount of texture memory
required would exceed that available on many graphics cards.

Alternatively, the surface patches can be packed into tex-
ture space via a triangle packing algorithm in the manner
described by Stalling [24] or Carr et al. [4]. However, the
packing problem becomes complex since CFD meshes are
usually composed of many scalene triangles as opposed to the
equilateral and isosceles triangles often found in computational
geometry. For CFD meshes, triangles generally have very
disparate sizes. Many triangles would have to be packed that
cover less than one texel (cf. Figure 2). In addition, the
problem of advecting texture properties across triangle edges
would have to be addressed. To by-pass this, the surfaces
could be divided into patches which could be stored into a
texture atlas [16]. However, much computation time would be
spent generating texels which cover polygons hidden from the
current point of view because packing does not consider the
current viewing projection.

B. Side-by-Side Overview of Both Methods

ISA and IBFVS simplify the problem by confining the synthe-
sis and advection of texture properties to image space. Both
methods project the surface mesh and associated vector data to
image space and then apply a series of textures. Summarizing,
the methods are comprised of the following steps:

1) associate the 3D flow data with the polygons at the
boundary surface, i.e., a velocity vector is stored at each
polygon vertex of the surface

2) project either the associated vector field or the distorted
surface mesh onto the image plane

3) advect texture properties according to the projected
vector field or the projected, distorted mesh in image
space

4) inject and blend noise
5) overlay optional visualization cues such as showing

a semi-transparent representation of the surface with
shading

These stages are depicted schematically for ISA and IBFVS
in Figure 3. Each step of the pipeline is necessary for the
dynamic cases of unsteady flow, time-dependent geometry,
rotation, translation, and scaling, and only a subset is needed
for the static cases involving steady-state flow and no change
to the viewing parameters.

The ISA and IBFVS implementation pipelines are shown
side-by-side in Figure 3 in order to illustrate overlap and diver-
gence. Conceptually, the algorithms share several overlapping
components such as projection to image space, advection mesh
computation, texture-mapping, noise injection and blending,
and the addition of shading or a color map. The main dif-
ference between the two methods is that ISA uses an image-
based mesh in order to advect the textures, whereas the texture

advection in IBFVS is driven by the original 3D mesh. As a
result, differences arise stemming from parts of the algorithm
that use image space vs. object space. These decisions result in
advantages and disadvantages for both methods. We examine
each of these stages in more detail in the sections that follow.

C. Projection, Image vs. Object Space

In order to advect texture properties in image space, we must
project either the vector field associated with the surface or the
distorted surface mesh coordinates to the image plane, taking
into account that the velocity vectors are stored at the polygon
vertices. Projecting the vector field or the advected mesh
coordinates to image space makes the advection computation
and noise blending simpler, thus ISA and IBFVS inherit
advantages from the original LEA and IBFV, e.g., simple noise
blending and fast frame rates.

1) ISA: Image Space Vector Field Projection: ISA uses an
image space approach that takes advantage of the graphics
hardware in order to project the vector field to the image
plane. A color whose � , K , and � values encode the � , � ,
and � components of the local vectors is assigned to each
vertex of the boundary surface respectively. The velocity-
colored geometry is rendered to the framebuffer using Gouraud
shading in order to fill the projected triangles with interpolated
velocity values. We use the term velocity image (Figure 4 top,
left) to describe the result of rendering the mesh, with colors
encoding velocities. The velocity image is interpreted as the
vector field and is used for the texture advection in image
space.

The de-coded velocity vectors used to compute the advec-
tion mesh (Section IV-D) are then projected onto the image
plane. In the ISA implementation, the projection of the vectors
to the image plane is done after velocity image construction
for two reasons: (1) not all of the vectors have to be projected
(Sec. IV-D), thus saving computation time and (2) ISA may
use the vectors from 3D world space in order to construct a
velocity mask [14].

The ISA approach yields the following benefits: (1) the
vector field and polygon mesh are decoupled, thereby freeing
up expensive computation time dedicated to polygons smaller
than a single pixel and (2) conceptually, this is performing
hardware-accelerated occlusion culling, since all polygons
hidden from the viewer are eliminated from any further pro-
cessing. Saving the velocity image to main memory is simple,
fast, and easy. On the graphics card we tested (Section VI),
reading the framebuffer required less than one millisecond.
We note that a full-resolution read-back of the framebuffer
is not a fundamental requirement of ISA, only of its current
implementation. A sample velocity image is shown in Figure 4
(top, left).

The use of a velocity mask results in quantization of the
velocity field. However, our experience shows that we are
unable to see quantization effects resulting from the use of
a velocity image in the ISA implementation. ISA has been
implemented in the framework of a commercial software and
has been tested on a wide variety of data sets with velocity
magnitudes varying by up to three orders of magnitude.
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Fig. 3. Flow diagrams of the two texture-based flow visualization algorithms, side-by-side. On the left is the ISA pipeline, on the right is IBFVS. The edge
detection process of the original ISA algorithm [14] is not included in order to highlight the major differences between the algorithms.

Fig. 4. The five component images, plus a sixth composite image, used for
the visualization of surface flow: (top, left) the velocity image (ISA only),
(top, middle) the geometric edge boundaries drawn in black for illustration
(ISA only), (top, right) advected and blended textures, (bottom, left) a sample
noise image, (bottom, middle) an image overlay, (bottom, right) the result of
the composited images with an optional color map.

2) IBFVS: Object Space Mesh Projection: The IBFVS
method determines the new texture coordinates by projecting
the position of the previous point on a 3D pathline through
a vertex . S by the CPU. The 3D vector field is used in the
advection and integration process and not the projected vector
field. IBFVS is closer to an object-space approach. That is, for
each surface mesh vertex, its distorted and projected quantity
is computed in software. This has the advantage of simplicity,
plus no resampling and interpolation of the vector field is
performed.

Additionally, IBFVS avoids some of the disadvantages of
the ISA approach. Namely, (1) no separate velocity image
has to be constructed, and (2) it avoids read-back of the
framebuffer, an operation that can be time consuming. One
disadvantage of the IBFVS approach appears in the case
of very dense meshes. In this case, many distorted mesh
coordinates may be projected onto the same pixel in image
space, thus creating redundant computation. Also, coordinates

occluded from the viewer are also projected onto the image
plane.

D. Image vs. Polygonal Texture Advection

After the projection stage, both ISA and IBFVS compute the
texture coordinates used to advect the textures in image space.
Both ISA and IBFVS use backward coordinate integration (in-
troduced by Max and Becker [20]). ISA uses the precomputed
projected velocities �Ny"� . S 	 to compute the texture coordinates:� S � . yS G � y � . yS 	�=>� (12)

Whereas IBFVS determines the texture coordinates using
projection of the previous point on the 3D streamline through
a vertex . S : � S � { � . S G � S � . S 	�=>��	 (13)

In other words, the texture is advected over the mesh, instead
of moving the mesh with the texture attached to it. This
approach has advantages because texture properties are not
pushed outside the geometry and because the mesh remains
static.

1) ISA: Image Mesh Texture Advection: The meshes used
to compute the advected texture coordinates in image space
are different for ISA and IBFVS. This is a central difference
between the two approaches.

ISA distorts a regular, rectilinear mesh defined in 2D image
space, that conceptually overlaps the velocity image. The
velocities at the mesh vertices are found by a look up in
the velocity image followed by a projection to the image
plane. In this case the texture coordinates located at the
backward distorted mesh positions are mapped to the mesh
vertices. We can summarize this as an image mesh texture
advection approach. The resulting texture-mapping takes place
in image space. Some advantages of using an image mesh
texture advection approach are: (1) no computation time is
spent on mesh polygons covering an area of less than one
pixel, (2) no computation time is spent computing texture
coordinates for occluded polygons, and (3) the resolution of
the texture advection remains constant during user zooming.
This is important because as the user zooms towards an object,
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the ISA approach implicitly samples the vector field at a higher
spatial frequency in object space.

2) IBFVS: Polygonal Mesh Texture Advection: IBFVS
starts with the original surface mesh, distorts each vertex in
object space, projects the distorted vertices, and then warps the
texture according to the projected mesh vertices. Each vertex is
derived from the mesh in object space, projected to the image
plane. We can summarize this as a polygonal mesh texture
advection approach. The resulting texture-mapping returns
back to object space. The distorted texture coordinates are
mapped to the original 3D surface mesh vertices.

One advantage of the polygonal mesh texture advection ap-
proach is that the density of the polygonal mesh used to advect
the texture is the same as the density of the original mesh.
Hence, in areas with more detail, more polygons are used.
Also, the performance time of IBFVS could be accelerated by
discarding back-facing polygons or polygons far outside the
clipping frustum.

For both ISA and IBFVS, when the view is changed or when
the object is moved, the projection of the patterns is unaltered
in viewing space, hence the viewer can briefly observe that the
texture patterns are not fixed to the surface, but reside in image
space. For animated textures the effect is less strong however.
The viewer tends to follow the moving texture properties
instead of fixing the view to a point in screen space.

Measures can be taken to decrease this effect that stems
from the textures being visually disconnected from the 3D
geometry when changing the viewing direction. First, when
the user changes the view, the projection of the texture can be
changed as well. The original IBFVS implementation provides
the option that the textures in image space are translated
according to the motion of the mouse pointer. This improves
the perceived imagery significantly for translation, reasonably
for rotation, but not for scaling. Such an option can also be
added to an ISA implementation.

Another approach is to stop the update of the texture image.
If the calculation of new texture coordinates and animation
are skipped, the IBFVS algorithm reduces to standard texture
mapping, using the last generated noise pattern as a fixed
texture map. When the user stops the manipulation, texture
coordinate computation and texture advection animation are
enabled again. The last pattern is used as a start for the new
animation. This method works well for scaling and dragging,
but is less effective for rotation because sometimes a good
texture mapping has not been generated for occluded portions
of the surface.

For both ISA and IBFVS, when the view is changed, it takes
a short time before the image or animation stabilizes again.
With a frame rate of 50 FPS, the image stabilizes in about one
half of a second.

E. Edge Detection and Blending

If we look carefully at the result of advecting texture properties
in image space, we notice that in some cases a visual flow
continuity is introduced where it is not desired. A sample case
is shown in Figure 5. A portion of the 3D geometry, shown
colored, is much less visible after the projection onto the
image plane. If the flow texture properties are advected across

Im
ag

e S
pac

e

Object Space

Fig. 5. A 3D surface geometry (left) is projected, to image space (right).
If flow aligned texture properties are advected across the colored edge, an
artificial flow continuity results.

Fig. 6. A close-up example of ISA geometric edge detection: on the left
side, geometric edge detection is disabled, on the right side enabled (ISA).

this edge in image space, also shown colored, an artificial
continuity results.

1) ISA: Image Space Edge Detection and Blending: To han-
dle this, ISA incorporates a geometric edge detection process
that, although using depth information from object space, can
be implemented in image space. During the image integration
computation, ISA compares spatially adjacent depth values
during one integration and advection step. ISA compares the
associated depth values, ��5I7<9 and �g5 in object space of .�587:9
and . 5 from equation (13), respectively. Ifb � 5I7<9 G�� 5 bn��� w b . 5I7<9 G�. 5 b (14)

where � is a threshold value, then ISA identifies an edge. All
positions, . 5 , for which equation (14) is true, are classified as
edge advection point. Special treatment must be given when
advecting texture properties from these points. This process
does not detect all geometric edges, only those edges across
which flow texture properties should not be advected.

Figure 4 (top, middle) shows one resulting set of edges
from the ISA detection process. We term this result an edge
mask. The edge mask is created and stored during the dynamic
visualization case and additional blending is applied during the
static case. During the edge blending phase of the algorithm,
ISA introduces discontinuities in the texture aligned with the
geometric discontinuities from the surface, i.e., gray values are
blended in at the edges. This has the effect of adding a gray
scale phase shift to the pixel values already blended.

Some results of the ISA edge detection and blending phase
are illustrated in Figure 6. In our data sets an � of 1–2% of
depth buffer is practical when comparing depth values from
Equation (14). The ISA edge mask improves the visualization
result of texture advection on surfaces. Plus, the image space
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Fig. 7. Boundary inflow from background. With the red background, artifacts
show up more clearly (IBFVS).

approach takes advantage of information already provided by
the graphics hardware. However, one disadvantage of the ISA
implementation is that it requires read-back of the depth buffer.

2) IBFVS: Object Space Edge Detection and Blending:
Originally IBFVS did not include an edge detection and
blending process (as indicated in Figure 3, right). However,
we have implemented and experimented with an object space
approach that can be incorporated into IBFVS.

Creating an edge mask for IBFVS can be done as follows.
Firstly, silhouette edges are identified. These are either bound-
ary edges or edges between a backward and forward facing
polygon. Next, background-colored lines with high opacity are
rendered on top of the synthesized texture. As a result, the
texture is dimmed and the artificial continuity is diminished.

One advantage of this approach is that it avoids read-back
of the depth buffer. One disadvantage of this approach is that,
since it is an object space approach, it may have a negative
impact on overall performance time in the case of large surface
meshes.

F. Boundaries and Silhouettes

Another problem with performing the texture synthesis in im-
age space relates to boundary artifacts in regions of incoming
flow. In areas where no texture is present, the background color
may blend in. This is illustrated in Figure 7, right. Without
special treatment, geometric boundaries with incoming flow
may appear dimmer than the rest of the geometry. This is a
result of the noise injection and blending process described in
Section IV-G. In short, the background color shows through
more in areas of incoming flow because not as much noise
has been blended in these areas.

1) ISA Boundary Treatment: The same edge detection and
blending benefits described in Section IV-E.1 also benefit the
treatment of incoming boundary flow. Figure 8, left, shows a
surface mesh from a CFD simulation with incoming boundary
flow coming in through inlet from the top, right. Note that
the edge of the inlet appears dim. Figure 8, right, shows the
same inlet with ISA edge blending turned on. The boundary
artifacts of the noise injection and blending process are no
longer a distraction. Edge detection and blending also plays
an important role while an object is rotating. Without special
treatment, contours in image space become blurred when
different portions of a surface geometry overlap.

Fig. 8. At the top we see the inlet of an intake port from a CFD simulation
(ISA). On the left, with no edge blending, the background color shows through
boundary areas with incoming flow. On the right, with ISA edge blending,
these artifacts are no longer a distraction. Also, the edges are crisper.

2) IBFVS Boundary Treatment: IBFVS uses a gray back-
ground color by default instead of black (or red). As this color
is close to the average value of the texture, artifacts are less
visible. This is illustrated in Figure 7, left. Arguably, boundary
artifacts here are not as disturbing relative to the original IBFV.
Firstly, the contrast of the texture is less than with the original
IBFV and hence errors show up less clearly. Secondly, near
boundaries and silhouette edges, high gradients in the shading
are common. These edges draw the attention of the viewer.
Thirdly, the edge mask described in Section IV-E.2 can be
added to reduce these artifacts.

G. Noise Injection and Blending

By reducing the image generation process back to two dimen-
sions, the noise injection and blending phase falls in line with
the original IBFV. The process is purely image based for both
ISA and IBFVS. Namely, an image, C , is related to a previous
image, K , by [26]

C � .�5 � ? 	D� M 5I7<9R Sp�:�Q� H�G�M 	 S K � .65I7 S � ?>G'Y 	 (15)

where .�5 represents a pathline and M defines a blending
coefficient. Thus a point, . 5 , of an image C 5 , is the result of a
convolution of a series of previous images, K ����� Y 	 , along the
pathline through . 5 , with a decay filter defined by M � H�G�M 	 S .

Figure 4 (top, right) shows a sample blended image ( C )
and Figure 4 (bottom, left) shows a sample noise image ( K ).
More details about the noise injection process can be found
in previous work [14], [26].

H. Image Overlay Application

For both ISA and IBFVS the rendering of the advected image
and the noise blending may be followed by an image overlay.
An overlay enhances the resulting texture-based representation
of the surface flow by applying color, shading, or any attribute
mapped to color (Fig. 4, bottom, right). In implementation,
ISA and IBFVS generate the image overlay following the
vector field projection. The overlay is constructed once for
the dynamic case and applied after the image advection,
edge blending, and noise blending phases. Since the image
advection exploits frame-to-frame coherency, the overlay must
be applied after the advection in order to prevent the surface
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Fig. 9. Uniform density of texture in image space (left, IBFVS) and in object
space (right).

itself from being smeared. Figure 4 (top, right) shows only the
flow while Figure 4 (bottom, middle) shows only the surface.

I. A Perceptual Consequence: Non-Uniform Density

One of the primary advantages of performing texture synthesis
in image space is the gain in performance. However, gener-
ating and advecting textures in image space while visualizing
object space has perceptual consequences as mentioned previ-
ously in Section IV-D.2.

For both ISA and IBFVS, the density of the texture is
constant in image space. One can object that this is unnatural
and a constant density in world space seems more appropriate.
There are three situations where this is visible. Firstly, the
density does not depend on the orientation of the surface,
i.e., when viewed under an oblique angle the density is the
same as when viewed perpendicular. Secondly, the density
is independent of the perspective, i.e., surfaces close to the
viewer have the same density as surfaces far away. In Figure 9,
two textured cylinders are shown with flow along the axis, on
the left with a uniform density in image space (produced by
IBFVS), on the right with a uniform density in surface space
(produced by texture mapping a noise pattern). The difference
between these images is small, and the left image does not
necessarily appear unnatural.

The third situation where this is visible is in the case of
zooming. With image-based texture, the density of the texture
remains constant in image space. This is highly advantageous
for visualization purposes, but unnatural from a physical point
of view. In the real world, texture is scaled when we approach
an object and other higher frequency details become visible.
With computer-generated imagery however, a uniform density
in object space can lead to unnatural effects. When a textured
surface is close to the viewer, the texture is scaled strongly and
appears blurred, whereas surface parts far away have a high
density and usually appear sharp. Although distant textures
may also suffer aliasing artifacts, especially in the case of
high frequency textures. ISA and IBFVS do not suffer from
these such aliasing artifacts.

J. ISA Texture Clipping and IBFVS Texture Interpolation

In ISA, the resolution of the quadrilateral mesh used to warp
the image can be specified by the user. The user may specify
a coarse resolution mesh, e.g., H8�j� � , for faster performance

Fig. 10. The result of, left, a coarse resolution advection mesh with artifacts
and, right, the application of texture clipping (ISA). The resolution of the
advection mesh shown on the left is 32 � 32 for illustration.

or a fine resolution mesh, e.g., �tH8� � , for higher accuracy.
However, if the resolution of the advection mesh is too coarse
in image space, artifacts appear. Figure 10, left, illustrates
these artifacts zoomed in on the edge of a surface. In order to
minimize the jagged edges created by coarse resolution texture
quadrilaterals, ISA applies a texture clipping function. Subsets
of textured quadrilaterals that do not cover the surface are
clipped from the visualization as shown in Figure 10, right.
This can be implemented simply with the image overlay by
assigning unity to the opacity wherever the depth buffer value
is maximized, i.e., wherever there is a great depth.

In IBFVS the inserted noise also has to be clipped to the
projection of the mesh. This is realized by using a texture
mapped rectangle at great depth, where the z-buffer test is set
such that it is only visible when an object is in front. The
previous image is texture mapped directly on the 3D mesh,
which sometimes gives rise to a texture interpolation artifact.
The scan conversion of a triangle involves interpolation of
edges, colors, and also texture coordinates. Hardware offers
the option to interpolate texture coordinates perspectively
correct. Artifacts become visible when large triangles are
rendered with a high depth gradient. The texture synthesis
process is two-dimensional, assuming a linear interpolation of
texture coordinates. One solution could be simply to turn off
perspectively correct texture interpolation. Another solution is
to use only small triangles or to switch to isometric projection
for close-up views.

V. APPLICATIONS OF ISA AND IBFVS

For applications, we start with flow visualization, the original
impetus for this work, followed by a discussion of how the
perception of surfaces can be enhanced by adding texture.1

A. Flow Visualization

Our visualization techniques have been applied to large, highly
irregular, adaptive resolution meshes commonly resulting from
CFD simulations.

1) Computational Fluid Dynamics: Figure 12 illustrates
ISA applied to a surface of the intake port mesh shown in
Figure 2 composed of 221K polygons. The intake port is
composed of polygons with highly varying sizes for which
no global parameterization is readily available. The methods

1For supplementary material, including MPEG animations, please visit:
http://www.VRVis.at/ar3/pr2/isa-ibfvs/
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Fig. 11. Snapshots from the visualization of a time-dependent surface mesh composed of 79K polygons with dynamic geometry and topology (ISA).

Fig. 12. A side view of the surface of an 221K polygonal intake port mesh
(ISA).

here allow the user to zoom in at arbitrary view points always
maintaining a high spatial resolution visualization.

The methods apply equally well to meshes with time-
dependent geometry and topology. Figure 11 shows the surface
of a piston cylinder with the piston head (not shown) defining
the bottom of the surface. The methods here enable the
visualization of fuel intake as the piston head slides down
the cylinder. The resulting flow visualization has a smooth
spatio-temporal coherency.

2) Meteorological Data: Image-based flow visualization
also applies to meteorological data. Figure 13, shows the
average wind stress field averaged over more than 100 years
for the month of January. On the left, a map of the world is
shown, and the strength of the texture is modulated with the
magnitude of stress. On the right, the magnitude is visualized
via color. Various features, especially vortices, show up clearly.
The user can rotate and zoom in on the globe and view the
variation of the flow over the year. Features like the monsoon
in India and the circulation around Antarctica are clearly
visible.

Fig. 13. The wind stress over the month of January, averaged over more
than 100 years, visualized at the earth’s surface (IBFVS).

3) Medical Visualization: Our algorithms also have ap-
plications in the field of medicine. Figure 14 shows the
circulation of blood at the junction of three blood vessels. An
abnormal cavity has developed that hinders the optimal distri-
bution of blood. ISA and IBFVS have also been applied to the
visualization of surface topology [27] and isosurfaces [15].

B. Surface Visualization

The rendering of surfaces can be considered a visualization
problem. Interrante et al. have presented a variety of methods
to visualize surface shape based on differential geometry [9].
They have shown how valleys and ridges on the surface can
be detected and emphasized by lines [10]. They have studied
how texture, aligned with principal directions, can aid in
understanding surface shape [7]. We have studied if ISA and
IBFVS can be used for this purpose.

We can modulate the strength of the texture with respect
to the shading and modulate the color of the surface. The
results give the impression that a dirty surface has superficially
been cleaned (Figure 15). A more detailed discussion and
further examples of surface visualization are illustrated by Van
Wijk [27].

VI. PERFORMANCE AND IMAGE QUALITY

We have implemented both ISA and IBFVS in the same soft-
ware application in order to facilitate comparison of the two.
Our implementation is based on OpenGL 1.1. Performance for
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Fig. 14. Medical visualization: blood flow at the surface of the junction
of three blood vessels. Stagnant blood flow may occur within the abnormal
pocket at the junction (ISA).

Fig. 15. A texture modulated with respect to shading and color (IBFVS).

both ISA and IBFVS was evaluated on a PC with an Nvidia
980XGL Quadro graphics card, a 2.8 GHz dual-processor and
1 GB of RAM. The performance times reported in Table 1
enable interactive exploration of unsteady flow on surfaces.
Triangle strips and OpenGL display lists were employed to
accelerate the frame rates.

For comparing relative performance, we use the following
notation: � denotes the number of polygons contained in
the object space mesh, � denotes the effective number of
polygons used by ISA in the image mesh, and � indicates a
constant time factor. For ISA, � is a function of the (image
space) texture advection resolution and the percentage of
image space covered by the object. More precisely, � �1lj��$� ,
where l��� is the texture advection mesh resolution and � is the
percentage of image space covered by the surface mesh after
rendering. In our test cases shown in Table 1, we covered
about 75% of image space, with the exception of the cooling

jacket [14], which covers only 39% of image space.
The first times reported (in Table 1) in the FPS columns are

for the static cases of steady-state visualization and the absence
of changes to the view point. The times shown in parentheses
indicate the dynamic cases of unsteady flow and interactive
zooming and rotation illustrated in Figure 3. We include
geometric edge detection in the ISA frame rates reported in
Table 1. It does not introduce significant overhead since it is
easily built into the ISA advection process.

data no. of IBFVS ISA adv. ISA
set polys FPS mesh res. FPS�\���

64 (38)
ring 10K 64 (49)  �¡�¢ � 64 (20)

(Fig 4) ¡�£ � � 31 (7.5)£8 �¡ � 14 (2.7)
combustion

�\���
64 (38)

chamber 79K 56 (38)  �¡�¢ � 64 (18)
(Fig 11) ¡�£ � � 30 (7.5)£8 �¡ � 15 (2.7)
intake

�\���
64 (13)

port 221K 13 (3.0)  �¡�¢ � 64 (10)
(Fig 12) ¡�£ � � 30 (5.3)£8 �¡ � 15 (1.9)
cooling

�\���
64 (15)

jacket 228K 13 (2.7)  �¡�¢ � 64 (13)
( [14]) ¡�£ � � 47 (8.0)£8 �¡ � 20 (3.1)

TABLE I

SAMPLE FRAME RATES FOR THE ISA AND IBFVS VISUALIZATION

ALGORITHMS.

Stage ISA IBFVS

Dynamic Case:
project vector field ¤ ¤
compute texture coordinates ¥ ¤
Static Case:
texture map mesh ¥ ¤
inject and blend noise ¦ ¦
save image to texture memory ¦ ¦
render image overlay ¦ ¦

TABLE II

THE PERFORMANCE DEPENDENCY OF EACH STAGE OF THE ISA AND

IBFVS PIPELINES: ¤ INDICATES THE NUMBER OF POLYGONS IN OBJECT

SPACE AND ¥ INDICATES THE NUMBER OF POLYGONS IN IMAGE SPACE.

Table 2 shows for each step the dependency on the number
of polygons � in the original mesh and the number of
polygons � of the image mesh used by ISA. The performance
time of IBFVS depends linearly on � for both the static
and dynamic case. For the dynamic case, projections for all
vertices have to be calculated and updated texture coordinates
must be sent to the GPU, leading to a significantly lower
performance in the dynamic case.

For ISA, the performance depends linearly on � and �
for the dynamic case, but only on � for the static case. As
a result, we see that again the dynamic case has a lower
performance. For the static case, ISA outperforms IBFVS
when � §P� , i.e., when using coarse image meshes for
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small polygon meshes, or when the original polygon meshes
are larger than ¨ 200K polygons.

In general, the image quality of ISA and IBFVS is very
similar. Figure 1 shows a side-by-side image quality compar-
ison of the two methods. For ISA, the image quality also
depends on the resolution of the user-controlled advection
mesh. Resolutions of H8�j� � – �tHI� � are generally of high quality
with a drop-off at ©jª � at mesh edges (Figure 16). In the case of
ISA, we recommend the user explore the dataset at ©�ª � – H8�j� �
advection mesh resolutions and change to �4��©n« – �QH8� � when
higher accuracy is required, such as for presentations.

Fig. 16. ISA with different advection mesh resolutions: top-left: £8 �¡ � , top-
right: ¡�£ � � , middle-left:  �¡�¢ � , middle-right:

�\� �
, bottom-left: a close-up of

an edge at £8 �¡ � , bottom-right: a close-up of an edge at
�\� �

. Resolutions of£8 �¡ ��¬ ¡�£ � � are virtually indistinguishable whereas at
�\� �

, image quality
can degrade.

VII. DISCUSSION AND CONCLUSIONS

The choice of whether to apply ISA or IBFVS depends on
the complexity of the model. For surface visualization like
that shown in Figure 15, IBFVS is a good choice. Polygons
generally cover several pixels in image space and the amount
of computation time per-pixel is low. For visualization of
flow on large meshes such as Figure 12, ISA is a good
choice. For these meshes, many polygons cover less than a
pixel and many polygons are occluded. ISA avoids spending
computation time on these pixels. Also, in terms of software

development, IBFVS is generally easier to implement because
it is a more straightforward extension of IBFV.

We also point out that ISA and IBFVS are much faster than
previous attempts to depict both steady and unsteady flow on
surfaces using texture synthesis. This includes the previous
work by Forssell and Cohen [6] to extend LIC to curvilinear
grids, Battke et al. [1] to extend Fast LIC to arbitrary surfaces,
and Mao et al. [18] who extend LIC to arbitrary triangular
meshes with steady-state flow. In addition, we have not seen
much work in the area of texture-based flow visualization on
surfaces in general since the introduction of UFLIC (Unsteady
Flow LIC) by Shen and Kao [23] in 1998, which also used a
parameterization.

One open question concerning the performance times of
ISA and IBFVS arises in the case of programmable graphics
hardware. In the case of surfaces the algorithms might be even
faster if they did not use the mesh vertices for warping, i.e.,
if they used a velocity image as per-pixel texture coordinate
offsets, even though dependent texture reads are slower than
default texture mapping. There is however at least one good
reason for not choosing this route and that is namely portabil-
ity. ISA and IBFVS do not rely on proprietary programmable
graphics hardware and thus are not bound to any specific
graphics card.

VIII. SUMMARY AND FUTURE WORK

We have presented a side-by-side comparison of two novel
techniques for texture synthesis of unsteady flow on boundary
surfaces. We have identified where ISA and IBFVS overlap
and where they diverge. We also identify the relative strengths
and weaknesses of each approach and offer our views as to
where the methods are best applied. The algorithms support
visualization of flow on arbitrary surfaces, at over 60 FPS in
many cases. ISA and IBFVS support exploration and visualiza-
tion of flow on large, unstructured polygonal meshes, and on
time-dependent meshes with dynamic geometry and topology.
While the vector fields are defined in 3D and associated
with arbitrary triangular surface meshes, the generation and
advection of texture properties is derived in image space.

Dense flow-aligned textures on surfaces, generated at high
speed, are useful for many application areas. In the application
sections we have presented examples for flow visualization,
medical visualization, meteorology, and for more general
surface visualization.

Future work can go in many directions including visual-
ization of unsteady 3D flow, something we expect to see
soon. Challenges will include both interactive performance
time and perceptual issues. Future work also includes the
application of more specialized graphics hardware features like
programmable per-pixel operations in the manner of Weiskopf
et al. [28].
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