
Image Space Based Visualization of Unsteady Flow on Surfaces

Robert S. Laramee† Bruno Jobard‡ Helwig Hauser†

†VRVis Research Center, Austria, www.VRVis.at, {Laramee,Hauser}@VRVis.at
‡University of Pau, France, www.univ-pau.fr, bjobard@univ-pau.fr

Figure 1: Visualization of flow on the surface of an intake mani-
fold. The ideal intake manifold distributes flow evenly to the piston
valves.

Abstract

We present a novel technique for direct visualization of unsteady
flow on surfaces from computational fluid dynamics. The method
generates dense representations of time-dependent vector fields
with high spatio-temporal correlation using both Lagrangian-
Eulerian Advection and Image Based Flow Visualization as
its foundation. While the 3D vector fields are associated with
arbitrary triangular surface meshes, the generation and advection
of texture properties is confined to image space. Frame rates of up
to 20 frames per second are realized by exploiting graphics card
hardware. We apply this algorithm to unsteady flow on boundary
surfaces of, large, complex meshes from computational fluid
dynamics composed of more than 250,000 polygons, dynamic
meshes with time-dependent geometry and topology, as well as
medical data.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism–Color, shading, shadowing, and texture; [Simulation
and Modeling]: Simulation Output Analysis

Keywords: Unsteady flow visualization, computational fluid
dynamics (CFD), surface representation, texture mapping

Figure 2: Visualization of flow at the complex surface of a cooling
jacket -a composite of over 250,000 polygons.

1 Introduction

Dense, texture-based, unsteady flow visualization on surfaces has
remained an elusive problem since the introduction of texture-
based flow visualization algorithms themselves. The class of fluid
flow visualization techniques that generate dense representations
based on textures started with the Spot Noise [van Wijk 1991] and
LIC [Cabral and Leedom 1993]. The main advantage of this class
of algorithms is their complete depiction of the flow field while their
primary drawback is, in general, the computational time required to
generate the results.

Recently, two new algorithms, namely Lagrangian-Eulerian Ad-
vection (LEA) [Jobard et al. 2001] and Image Based Flow Visual-
ization (IBFV) [van Wijk 2002], have been introduced that over-
come the computation time hurdle by generating two-dimensional
flow visualization at interactive frame rates, even for unsteady flow.
This paves the way for the introduction of new algorithms that
overcome the same problems on boundary surfaces and in three
dimensions. In this paper we present a new algorithm that gener-
ates dense representations of arbitrary fluid flow on complex, non-
parameterized surfaces, more specifically, surfaces from compu-
tational fluid dynamics (CFD). However, the algorithm is general
enough to apply to other vector field data associated with a surface
such as blood vessel flow.

Traditional visualization of boundary flow using texture mapping
first maps one or more 2D textures to a surface geometry defined in
3D space. The textured geometry is then rendered to image space.

Here, we alter the classic order of operations. First we project the
surface geometry to image space and then apply texturing. In other
words, conceptually texture properties are advected on boundary
surfaces in 3D but in fact our algorithm realizes texture advection
solely in image space. The result is a versatile visualization tech-
nique with the following characteristics:

• generates a dense representation of unsteady flow on surfaces

• visualizes flow on complex surfaces composed of polygons
whose number is on the order of 200,000 or more

• visualizes flow on dynamic meshes with time-dependent ge-
ometry and topology

• visualizes flow independent of the surface mesh’s complexity
and resolution

• supports user-interaction such as rotation, translation, and
zooming always maintaining a constant, high spatial resolu-
tion

• the technique is fast, realizing up to 20 frames per second

The performance is due, among other reasons, to the exploitation
of graphics hardware features and utilization of frame-to-frame co-
herency. The rest of the paper is organized as follows: in Section 2
we discuss related work, Section 3 details unsteady flow visualiza-
tion on surfaces from CFD. Implementation details are described in
Section 4 while results and conclusions are discussed in Section 5.

2 Related Work

Our work focuses on texture-based representations of unsteady flow
on complex, non-parameterized surfaces. The challenge of visual-
izing time-dependent vector fields on surfaces at fast frame rates
remains unsolved in surveys of the research literature [Post et al.
2002; Stalling 1997]. However, several techniques have been pro-
posed to successfully resolve parts of the problem. In the next
two sections we describe the two main categories of approaches
for dense representations on surfaces and dense representations of
unsteady 2D vector fields.

2.1 Texture-Based Flow Visualization on Surfaces

Previous research with a focus on representations of the vector field
on boundary surfaces is generally restricted to steady-state flow.
This is mainly due to the prohibitive computational time required.
An enhanced version of Spot Noise is applied to surfaces by de
Leeuw and van Wijk [de Leeuw and van Wijk 1995]. Battke et
al. [Battke et al. 1997] describe an extension of LIC for arbitrary
surfaces in 3D. Some approaches are limited to curvilinear surfaces,
i.e., surfaces that can be parameterized using 2D coordinates. Fors-
sell and Cohen [Forssell and Cohen 1995] extend LIC to curvilinear
surfaces with animation techniques and add magnitude and direc-
tional information. Mao et al. [Mao et al. 1997] present an algo-
rithm for convolving solid white noise on triangle meshes in 3D
space and extend LIC for visualizing a vector field on arbitrary sur-
faces in 3D. Stalling [Stalling 1997] provides a helpful overview of
LIC techniques applied to surfaces. In particular, a useful compari-
son of parameterized vs. non-parameterized surfaces is given.

2.2 LEA and IBFV

The algorithm in this paper is a new approach that incorporates fea-
tures of both LEA and IBFV. These very effective algorithms have
recently been introduced to produce dense representations of un-
steady, 2D vector fields.

Jobard et al. introduced a Lagrangian-Eulerian texture advection
technique for 2D vector fields at interactive frame rates [Jobard

Figure 3: A wire frame view of the surface of two intake ports
showing its 221,000 polygonal composition: (left) an overview
from the top, note that many polygons are cover less than one pixel
(right) a close-up view of the mesh between the two intake ports.

et al. 2001; Jobard et al. 2002]. The algorithm produces animations
with high spatio-temporal correlation. Each still frame depicts the
instantaneous structure of the flow, whereas an animated sequence
of frames reveals the motion of a dense collection of particles when
released into the flow. Particle paths are integrated as a function
of time, referred to as the Lagrangian step, while the color distri-
bution of the image pixels is updated in place (Eulerian step). The
result represents a large step forward in bringing the visualization
of unsteady flow to interactive frame rates.

Image Based Flow Visualization by van Wijk [van Wijk 2002]
is the most recent algorithm for dense, 2D, unsteady vector field
representations. It is based on the advection and decay of textures
in image space. Each frame of the visualization is defined as a
blend between the previous image, warped according to the flow
direction, and a number of background images composed of filtered
white noise textures. Performance times up to 50 frames per second
are achieved through effective use of the graphics hardware.

3 Unsteady Flow Visualization on
Surfaces

In this section we describe our technique in detail, starting with a
discussion of those factors motivating the approach.

3.1 Physical Space vs. Parameter Space vs. Im-
age Space

One approach to advecting texture properties on surfaces is via the
use of a parameterization, a topic that has been studied ad nauseam
(e.g., Levy et al. [Lévy et al. 2002]). According to Stalling [Stalling
1997], applying LIC to surfaces becomes particularly easy when
the whole surface can be parameterized globally in two dimensions,
e.g., in the manner of Forssell and Cohen [Forssell 1994; Forssell
and Cohen 1995]. However, there are drawbacks to this approach.
Texture distortions are introduced by the mapping between param-
eter space and physical space and, more importantly, for a large
number of surfaces, no global parameterization is available such
as isosurfaces from marching cubes and most unstructured surface
meshes resulting from CFD. Surface meshes from CFD may con-
sist of smoothly joined parametric patches, but can have a complex
topology and therefore, in general, cannot be parameterized glob-
ally. Figures 2 and 3 are examples of surfaces for which a global
parameterization is not easily derived.

Another approach to advecting texture properties on surfaces
would be to immerse the mesh into a 3D texture, then the texture
properties could be advected directly according to the 3D vector

field. This would have the advantages of simplifying the mapping
between texture and physical space and would result in no distor-
tion of the texture. However, this visualization would be limited to
the maximum resolution of the 3D texture, thus causing problems
with zooming. Also, this approach would not be very efficient in
that most of the texels are not used. The amount of texture memory
required would also exceed that available on our graphics card, e.g.,
we would need approximately 500MB of texture memory if we use
4 bytes per texel and a 5123 resolution texture.

Can the problem be reduced to two dimensions? The surface
patches can be packed into texture space via a triangle packing al-
gorithm in the manner described by Stalling [Stalling 1997]. How-
ever, the packing problem becomes complex since our CFD meshes
are composed of many scalene triangles as opposed to the equilat-
eral and isosceles triangles often found in computational geome-
try. The problem of packing scalene triangles has been studied by
Carr et al. [Carr and Hart 2002]. For CFD meshes, triangles gener-
ally have very disparate sizes. For a given texture resolution, many
triangles would have to be packed that cover less than one texel.
To by-pass this, the surfaces could be divided into several patches
which could be stored into a texture atlas [Lévy et al. 2002]. In
any case, computation time would be spent generating texels which
cover polygons hidden from the current point of view. The pre-
ceding discussion leads us to an alternative solution that, ideally,
has the following characteristics: works in image space, efficiently
handles large numbers of surface polygons, spends no extra com-
putation time on occluded polygons, does not spend computation
time on polygons covering less than a pixel, and supports user in-
teraction such as zooming, translation, and rotation.

3.2 Method Overview

The algorithm presented here simplifies the problem by confining
the advection of texture properties to image space. We project the
surface geometry to image space and then apply a series of textures.
This order of operations eliminates portions of the surface hidden
from the viewer. In short, our proposed method for visualization of
flow on surfaces is comprised of the following procedure:

1. associate the 3D flow data with the polygons at the boundary
surface i.e., a velocity vector is stored at each polygon vertex
of the surface

2. project the surface and its vector field onto the image plane

3. identify geometric discontinuities

4. advect texture properties according to the vector field in image
space

5. inject and blend noise

6. apply additional blending along the geometric discontinuities
previously identified

7. overlay all optional visualization cues such as showing a semi-
transparent representation of the surface with shading

These stages are depicted schematically in Figure 4. Each step of
the pipeline is necessary for the dynamic cases of unsteady flow,
time-dependent geometry, rotation, translation, and scaling, and
only a subset is needed for the static cases involving steady-state
flow and no changes to the view-point. We consider each of these
stages in more detail in the sections that follow.

3.3 Vector Field Projection

In order to advect texture properties in image space, we must project
the vector field associated with the surface to the image plane, tak-
ing into account that the velocity vectors are stored at the polygon
vertices. We chose to take advantage of the graphics hardware to

Static
Casek

=
 k

 +
 1

Edge Blending

Noise Blending

Dynamic
Case

k
=

 k
 +

 1

Image Overlay Application

Compute Advection Mesh

Edge Detection

Image Advection

Vector Field Projection

Figure 4: Flow diagram of texture-based flow visualization on com-
plex surfaces -k represents time as a frame number.

project the vector field to the image plane. We assign a color whose
R, G, and B values encode the x, y, and z components of the local
vectors to each vertex of the boundary surface respectively. The
velocity-colored geometry is rendered to the framebuffer. We use
the term velocity image to describe the result of encoding the ve-
locity vectors at the mesh vertices into color values. The velocity
image is interpreted as the vector field and is used for the texture
advection in image space. More precisely, the color assignment can
be done with a simple scaling operation. For each color component,
hrgb, we assign a velocity, vxyz component according to:

hr =
vx −vminx

vmaxx −vminx

hg =
vy −vminy

vmaxy −vminy
(1)

hb =
vz −vminz

vmaxz −vminz

The minimum velocity component is subtracted for each color com-
ponent respectively, in an effort to minimize loss of accuracy.

The use of a velocity image yields the following benefits: (1)
the advection computation and noise blending is simpler in image
space, thus we inherit advantages from the LEA and IBFV, (2) the
vector field and polygon mesh are decoupled, thereby freeing up ex-
pensive computation time dedicated to polygons smaller than a sin-
gle pixel, (3) conceptually, this is performing hardware-accelerated
occlusion culling, since all polygons hidden from the viewer, are
immediately eliminated from any further processing, and (4) this
operation is supported by the graphics hardware. Saving the ve-
locity image to main memory is simple, fast, and easy. A sample
velocity image is shown in Figure 5 (top, left).

The construction of the velocity image allows us to take advan-
tage of hardware-accelerated flow field reconstruction. During the
construction of the velocity image, we enable Gouraud Shading,
also supported by the graphics hardware. Since each velocity com-
ponent is stored as hue at each polygon vertex of the surface, the
smooth interpolation of hue amounts to hardware-accelerated vec-
tor field reconstruction. This is important for a minimum of two
reasons. First, the polygonal primitive we choose at image advec-
tion time is independent of the original mesh polygons (more in
Section 3.4). In other words, the vertices of the mesh we use to dis-

Figure 5: The 5 component images, plus a 6th composite image,
used for the visualization of surface flow on a ring: (top, left) the
velocity image, (top, right) the geometric edge boundaries, (middle,
left) the advected and blended textures, (middle, right) a sample
noise image, (bottom, left) an image overlay, (bottom, right) the re-
sult of the composited images with an optional velocity color map.
The geometric edge boundaries are drawn in black for illustration.

tort the image are not the same vertices where the original velocity
vectors are stored. Second, interpolation is essential for flow field
reconstruction. When the surface is rendered with velocity encoded
as hue, the vertices of some polygons are clipped during the projec-
tion process. However, we still need to access the vector field values
inside those polygons, and not just at the vertices, hence the need
for reconstruction. We also note that we are not necessarily limited
to linear interpolation for reconstruction. Higher order interpola-
tion schemes can be supported by graphics hardware [Hadwiger
et al. 2001].

The velocity vectors are de-coded from the velocity image ac-
cording to:

vx = hr · (vmaxx −vminx)+vminx

vy = hg · (vmaxy −vminy)+vminy (2)

vz = hb · (vmaxz −vminz)+vminz

The de-coded velocity vectors used to compute the advection mesh
(Sec 3.4) are then projected onto the image plane.

The magnitude of the velocity vectors at those parts of the sur-
face orthogonal to the image plane may be shortened as a result

of perspective projection, i.e., if the dot product between the im-
age plane normal and the 3D surface normal is zero or close to
zero. This can reduce the visual clarity of the vector field’s direc-
tion during animation. In our implementation, we added an option
that allows the user to apply a bias to the velocity vectors that are
shortened close to zero due to the projection. We can use this bias
to reduce the scaling effect for curved surfaces. Conceptually it is
like applying a reverse velocity clamp.

The projection of the vectors to the image plane is done after
velocity image construction for 2 reasons: (1) not all of the vectors
have to be projected (Sec. 3.4), thus saving computation time and
(2) we use the original 3D vectors for the velocity mask (Sec. 4.2).

3.4 Advection Mesh Computation and Boundary
Treatment

After the projection of the vector field we compute the mesh used
to advect the textures similar to IBFV. We distort a regular, recti-
linear mesh according to the velocity vectors stored at mesh grid
intersections. The distorted mesh vertices can then be computed by
advecting each mesh grid intersection according to the discretized
Euler approximation of a pathline, p, (the same as a streamline for
steady flow) expressed as:

pk+1 = pk +vp(pk; t)∆ t (3)

where vp represents a magnitude and direction after projection to
the image plane. The texture coordinates located at the regular,
rectilinear mesh vertices are then mapped to the (forward) distorted
mesh positions. The distorted mesh positions are stored for fast
advection of texture properties for static scenes.

Special attention must be paid in order to handle flow at geomet-
ric boundaries of the surface. Figure 6 shows an overview of the
original IBFV process. During the visualization, each frame is ad-
vected, rendered, and blended in with a background image. If we
look carefully at the distort phase of the algorithm, we notice that
there is nothing to stop the image from being advected outside of
the physical boundary of the geometry. While this is not a problem
when the geometry covers the entire screen, this can lead to artifacts
for geometries from CFD, especially in the case of boundaries with
a non-zero outbound flow, e.g., flow outlets.

To address this problem we borrow a notion from LEA that treats
non-rectangular flow domains, namely, the use of backward coor-
dinate integration (also proposed by Max and Becker [Max and
Becker 1999]). Using backward integration, equation 3 becomes:

pk−1 = pk −vp(pk−1; t)∆ t (4)

In this case the texture coordinates located at the (backward) dis-
torted mesh positions are mapped to the regular, rectilinear mesh
vertices. Backward integration does not allow advection of image
properties past the geometric boundaries.

���� �� �� �� 	
��
�

����
��
��

�� ����

��

��

blendrender

k = k + 1

distortimage k

��� !"

Figure 6: An overview of the original image based flow visualiza-
tion

3.5 Edge Detection and Blending

While we gain many advantages by decoupling the image advection
process with the 3D surface geometry, artifacts can result, espe-
cially in the case of geometries with sharp edges. If we look care-
fully at the result of advecting texture properties in image space,
we notice that in some cases a visual flow continuity is introduced
where it may be undesirable. A sample case is shown in Figure 7.

World Space

Im
ag

e S
pa

ce

Figure 7: When a 3D surface geometry (left) is projected, conti-
nuity is created in image space (right). If the flow aligned texture
properties are advected across this edge, an artificial flow continuity
may result.

A portion of the 3D geometry, shown colored, is much less visi-
ble after the projection onto the image plane. If the flow texture
properties are advected across this edge in image space, also shown
colored, an artificial continuity results. To handle this, we incorpo-
rate a geometric edge detection process into the algorithm. During
the image integration computation, we compare spatially adjacent
depth values during one integration and advection step. We com-
pare the associated depth values, zk−1 and zk in world space of pk−1
and pk from equation 4, respectively. If

|zk−1 − zk| > ε · |pk−1 −pk| (5)

where ε is a threshold value, then we identify an edge. All posi-
tions, p, for which equation 5 is true, are classified as edge crossing
start points. Special treatment must be given when advecting tex-
ture properties from these points. This process does not detect all
geometric edges, only those edges across which flow texture prop-
erties should not be advected.

Figure 5 top, right shows one set of edges from the detection
process. The geometric edges are identified and stored during the
dynamic visualization case and additional blending is applied (de-
picted schematically in Figure 4). During the edge blending phase
of the algorithm we introduce discontinuities in the texture aligned
with the geometric discontinuities from the surface, i.e., gray val-
ues are blended in at the edges. This has the effect of adding a gray
scale phase shift to the pixel values already blended. This could ob-
viously be handled in different ways, e.g., choosing a random noise
value to advect or inverting the noise value already present. Some
results of the edge detection and blending phase are illustrated in
Figure 8. In our data sets an ε of 1-2% of depth buffer is practi-
cal. However, the users may set their own value if fine tuning of the
visualization is needed.

The same edge detection and blending benefits incoming bound-
ary flow. Also an artifact of the IBFV algorithm, geometric bound-
aries with incoming flow may appear dimmer than the rest of the
geometry. This is a result of the noise injection and blending pro-
cess described in Section 3.6. In short, the background color shows
through more in areas of incoming flow because not as much noise
has been blended in these areas. Figure 9, top, shows a 2D slice
through a 3D mesh from a CFD simulation with incoming bound-
ary flow coming in through the narrow inlet from the right. Note
that the edge of the inlet appears dim. Figure 9, bottom, shows the
same slice with edge blending turned on. The boundary artifacts

Figure 8: A close-up example of geometric edge detection: on the
left side, geometric edge detection is disabled, on the right side
enabled.

of the noise injection and blending process are no longer a distrac-
tion. Edge detection and blending also plays in important role while
an object is rotating. Without special treatment, contours in image
space become blurred when different portions of a surface geome-
try overlap, such as when blood vessels in Figure 12 overlap during
rotation.

3.6 Noise Blending

By reducing the image generation process back to two dimensions,
the noise injection and blending phase falls in line with the origi-
nal IBFV technique, namely, an image, F , is related to a previous
image, G, by [van Wijk 2002]:

F(p;k) = α
k−1

∑
i=0

(1−α)iG(pk−i;k− i) (6)

where p represents a pathline, α defines a blending coefficient, and
k represents time as a frame number. Thus a point, pk, of an im-
age Fk, is the result of a convolution of a series of previous images,
G(x; i), along the pathline through pk, with an decay filter defined
by α(1−α)i. The blended noise images have both spatial and tem-
poral characteristics. In the spatial domain, a single noise image,
g(x), is described as a linearly interpolated sequence of n random
values, Gi, in the range [0,n−1], i.e.,

g(x) = ∑hs(x− is)Gimod n (7)

where the spacing, s, between noise samples is generally greater
than or equal to the distance traversed by an image property in one
advection step and hs represents a triangular black and white pulse
function. Here x represents a location in the flow domain. In prac-
tice, we give the user control of s, resulting in multi-frequency tex-
ture resolutions in the spacial domain. The background textures
used for blending also vary in time. In the temporal domain, each
point, Gi in the background texture, periodically increases and de-
cays according to a profile, w(t), e.g.,

Gi;k = w((k/M +φi)mod 1) (8)

where φi represents a random phase, drawn from the interval [0,1),
M is the total number of background noise images used, and where
w(t) is defined for all time steps. We use a square wave profile, i.e.,
w(t) = 1 if t < 1/2 and 0 otherwise. In our application, the user
has the option of varying M. Smaller values of M result in higher
frequency noise in the temporal domain whereas higher values M
result in a lower temporal frequency. Figure 5 (middle, left) shows a
sample blended image and Figure 5 (middle, right) shows a sample
noise image.

Figure 9: Here we see a 2D slice through a 3D geometry from
a CFD simulation. (top) With no edge blending, the background
color shows through boundary areas with incoming flow. (bottom).
With edge blending, these artifacts are no longer a distraction.

3.7 Image Overlay Application

The rendering of the advected image and the noise blending may
be followed by an optional image overlay. An overlay enhances the
resulting texture-based representation of surface flow by applying
color, shading, or any attribute mapped to color (Fig. 5, bottom,
left). In implementation, we generate the image overlay following
the construction of the velocity image. This overlay may render
any CFD simulation attribute mapped to hue. The overlay is con-
structed once for each static scene and applied after the image ad-
vection, edge blending, and noise blending phases. Since the image
advection exploits frame-to-frame coherency, the overlay must be
applied after the advection in order to prevent the surface itself from
being smeared. Also worthy of mention, is that the opacity value of
the image overlay is a free parameter we provide to the user.

4 Implementation

In this section we consider some aspects of the algorithm not
previously discussed which are important for implementation.
Our implementation is based on the highly portable OpenGL 1.1
(www.opengl.org) library.

4.1 Texture Clipping

In our application, the resolution of the quadrilateral mesh used to
warp the image can be specified by the user. The user may specify
a coarse resolution mesh, e.g., 128 × 128, for faster performance or
a fine resolution mesh, e.g., 512 × 512, for higher accuracy. How-
ever, if the resolution of the advection mesh is too coarse in image
space, artifacts begin to appear. Figure 10, left, illustrates these ar-
tifacts zoomed in on the edge of a surface. In order to minimize the
jagged edges created by coarse resolution texture quadrilaterals, we
apply a texture clipping function. Subsets of textured quadrilateral
that do not cover the surface are clipped from the visualization as

shown in Figure 10, right. This can be implemented simply with
the image overlay by maximizing the opacity wherever the depth
buffer value is maximized, i.e., wherever there is a great depth.

Figure 10: The result of, left, a coarse resolution advection mesh
with artifacts and, right, the application of texture clipping. The
resolution of the advection mesh shown on the left is 32 × 32 for
illustration.

4.2 Velocity Mask

In order to dim high frequency noise in low velocity regions, the
user also has the option of applying a velocity mask. We adopt the
velocity mask of Jobard et al. [Jobard et al. 2001] for our purposes
here, namely:

α = 1− (1−v)m (9)

where α decreases as a function of velocity magnitude. In our case,
the image overlay becomes more opaque in regions of low velocity
and more transparent in areas of high velocity. With the velocity
mask enabled, the viewer’s attention is drawn away from areas of
stagnant flow, and towards areas of high flow velocity. We note that
in the context of CFD simulation data, engineers are often very con-
cerned about areas of stagnant flow. In the case of a cooling jacket,
stagnant flow may represent a region of the geometry where the
temperature is too high, possibly leading to boiling conditions thus
reducing the effectiveness of the cooling jacket itself. Therefore,
in our case the engineers may disable the velocity mask or use the
velocity mask to highlight areas of flow, e.g., make the hue brighter
in areas of low velocity.

5 Performance and Results

Our visualization technique is applied primarily to large, highly ir-
regular, adaptive resolution meshes commonly resulting from com-
putational fluid dynamics simulations. 1 The ideal intake manifold
(Fig. 1) supplies an equal amount of fluid flow to each piston valve.
Visualizing the flow at the surface gives the engineer insight into
any imbalances between the inlet pipes, in this case, the 3 long nar-
row pipes of the geometry. Figure 13 shows our method applied to
a surface of an intake port mesh (from Fig. 3) composed of 221K
polygons. The intake port mesh is composed of highly adaptive
resolution surface polygons and for which no global parameteri-
zation is readily available. The method described here allows the
user to zoom in at arbitrary view points always maintaining a high
spatial resolution visualization. The algorithm applies equally well
to meshes with time-dependent geometry and topology. Figure 11
shows the surface of a piston cylinder with the piston head (not
shown) defining the bottom of the surface. The method here en-
ables the visualization of fuel intake as the piston head slides down
the cylinder. The resulting flow visualization has a smooth spatio-
temporal coherency. Our algorithm also has applications in the field

1Supplementary video available at
http://www.VRVis.at/ar3/pr2/vis03/

Figure 11: Snapshots from the visualization of a time-dependent surface mesh composed of a 79K polygons with dynamic geometry and
topology. This intake valve and piston cylinder can also be used to analyse the formation of wall film, the term used to describe the liquid
buildup on surfaces.

of medicine. Figure 12 shows the circulation of blood at the junc-
tion of 3 blood vessels. An abnormal cavity has developed that may
hinder the optimal distribution of blood.

Figure 12: Visualization of blood flow at the surface of the junc-
tion of 3 blood vessels. Stagnant blood flow may occur within the
abnormal pocket at the junction.

Performance was evaluated on an HP Visualize workstation with
an HP fx graphics card, running Red Hat Linux 7.2 with a 1 GHz
Pentium III dual processor and 1 GB of RAM. The performance
times reported in Table 1 support interactive exploration of un-
steady flow on surfaces. The first time reported in the FPS column
is for the static cases of steady-state visualization and the absence
of changes to the view point. The times shown in parenthesis in-
dicate the dynamic cases of unsteady flow and interactive zooming
and rotation. More specifically, the dynamic cases require the con-
struction of a velocity image, image overlay, as well as geometric
edge detection. We include geometric edge detection in the frame
rates reported in Table 1. It does not introduce significant overhead
since it is easily built into the advection process itself.

The performance time of our algorithm depends on the resolu-
tion of the mesh used to perform the advection and the number of
polygons in the original surface mesh. In the case of steady-state
flow, the algorithm no longer depends on the number of polygons in

the surface mesh, but on the area covered in image space. The data
set shown in Figure 1, left, does not cover as much image space, so
its performance times are somewhat higher in the static case.

data number of advection mesh frames
set polygons resolution per second
ring 10K 128 × 128 18 (5)

(Fig 5) 256 × 256 9 (3)
512 × 512 3 (1)

intake 48K 128 × 128 22 (2)
manifold 256 × 256 14 (2)
(Fig 1) 512 × 512 6 (1)

combustion 79K 128 × 128 17 (2)
chamber 256 × 256 10 (2)
(Fig 11) 512 × 512 4 (1)
intake 221K 128 × 128 17 (0.5)
port 256 × 256 7 (0.5)

(Fig 13) 512 × 512 2 (0.3)

Table 1: Sample frame rates for the visualization algorithm.

6 Conclusions and Future Work

We have presented a novel technique for dense representations of
unsteady flow on boundary surfaces from CFD. The algorithm sup-
ports visualization of flow on arbitrary surfaces at up to 20 FPS via
the careful use of graphics hardware. It supports exploration and vi-
sualization of flow on large, unstructured polygonal meshes, and on
time-dependent meshes with dynamic geometry and topology. The
method generates dense representations of time-dependent vector
fields building on both the LEA and IBFV algorithms. It also does
not waste computation time on occluded polygons or polygons cov-
ering less than one pixel. While the vector fields are defined in 3D
and associated with arbitrary triangular surface meshes, the genera-
tion and advection of texture properties is confined to image space.

Future work can go in many directions including visualization
of unsteady 3D flow, something we expect to see soon. Challenges
will include both interactive performance time and perceptual is-
sues. Future work also includes the application of more specialized
graphics hardware features like programmable per-pixel operations
in the manner of Weiskopf et al. [Weiskopf et al. 2002; Weiskopf
et al. 2001] and the use of pixel textures like Heidrich et al. [Hei-
drich et al. 1999].

Portions of this work have been done via a cooperation
between two research projects of the VRVis Research Cen-
ter (www.VRVis.at) which is funded by AVL (www.avl.com)
and an Austrian governmental research program called Kplus
(www.kplus.at). We would also like to extend a special thanks to

Figure 13: A view of the surface of an 221K polygonal intake port
mesh show in Figure 3. Texture-based flow visualization is applied
to the surface.

J. J. van Wijk for helping us to understand the IBFV algorithm and
to Jürgen Schneider of AVL for his valuable insight into the CFD
simulation data sets. Thanks to Jeroen van der Zijp and the FOX
Windowing Toolkit (www.fox-toolkit.org) for help with the im-
plementation. Thanks to Michael Mayer for medical the simulation
data. We also thank Helmut Doleisch for his contributions. All
CFD simulation data presented in this research is courtesy of AVL.

References
BATTKE, H., STALLING, D., AND HEGE, H. 1997. Fast Line Integral Con-

volution for Arbitrary Surfaces in 3D. In Visualization and Mathematics,
Springer-Verlag, Heidelberg, 181–195.

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging Vector Fields Using
Line Integral Convolution. In Computer Graphics (SIGGRAPH ’93 Pro-
ceedings), vol. 27, 263–272.

CARR, N. A., AND HART, J. C. 2002. Meshed Atlases for Real-Time
Procedural Solid Texturing. ACM Transactions on Graphics 21, 2, 106–
131.

DE LEEUW, W., AND VAN WIJK, J. 1995. Enhanced Spot Noise for Vec-
tor Field Visualization. In IEEE Visualization ’95 Proceedings, IEEE
Computer Society, 233–239.

FORSSELL, L. K., AND COHEN, S. D. 1995. Using Line Integral Con-
volution for Flow Visualization: Curvilinear Grids, Variable-Speed An-
imation, and Unsteady Flows. IEEE Transactions on Visualization and
Computer Graphics 1, 2 (June), 133–141.

FORSSELL, L. K. 1994. Visualizing Flow over Curvilinear Grid Surfaces
Using Line Integral Convolution. In Proceedings of the Conference on
Visualization, IEEE Computer Society Press, Los Alamitos, CA, 240–
247.

HADWIGER, M., THEUSSL, T., HAUSER, H., AND GRÖLLER, E. 2001.
Hardware-Accelerated High-Quality Reconstruction on PC Hardware. In
Proceedings of the Vision Modeling and Visualization Conference 2001
(VMV-01), 105–112.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. 1999.
Applications of Pixel Textures in Visualization and Realistic Image Syn-
thesis. In ACM Symposium on Interactive 3D Graphics, ACM/Siggraph.

Figure 14: A close-up view of the surface of the intake port mesh
show in Figure 13. Here we illustrate user-supported zooming with
automatic, on the fly recalculation of the flow texture.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. Y. 2001.
Lagrangian-Eulerian Advection for Unsteady Flow Visualization. In
IEEE Visualization, IEEE.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, Y. 2002. Lagrangian-
Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visu-
alization. In IEEE Transactions on Visualization and Computer Graph-
ics, vol. 8(3), 211–222.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least
Squares Conformal Maps for Automatic Texture Atlas Generation. In
SIGGRAPH 2002 Conference Proceedings, Annual Conference Series,
362–371.

MAO, X., KIKUKAWA, M., FUJITA, N., AND IMAMIYA, A. 1997. Line
Integral Convolution for 3D Surfaces. In Visualization in Scientific Com-
puting ’97. Proceedings of the Eurographics Workshop in Boulogne-sur-
Mer, France, Eurographics, 57–70.

MAX, N., AND BECKER, B. 1999. Flow Visualization Using Moving
Textures. In Data Visualization Techniques, 99–105.

POST, F. H., VROLIJK, B., HAUSER, H., LARAMEE, R. S., AND

DOLEISCH, H. 2002. Feature Extraction and Visualization of Flow
Fields. In Eurographics 2002 State-of-the-Art Reports, The Eurograph-
ics Association, Saarbrücken Germany, 69–100.

STALLING, D. 1997. LIC on Surfaces. In Texture Synthesis with Line
Integral Convolution, SIGGRAPH ’97, Int. Conf. Computer Graphics
and Interactive Techniques, 51–64.

VAN WIJK, J. 1991. Spot noise-texture synthesis for data visualization. In
Computer Graphics (SIGGRAPH ’91 Proceedings), vol. 25, 309–318.

VAN WIJK, J. J. 2002. Image Based Flow Visualization. In SIGGRAPH
2002 Conference Proceedings, Annual Conference Series, 745–754.

WEISKOPF, D., HOPF, M., AND ERTL, T. 2001. Hardware-Accelerated Vi-
sualization of Time-Varying 2D and 3D Vector Fields by Texture Advec-
tion via Programmable Per-Pixel Operations. In Proceedings of the Vi-
sion Modeling and Visualization Conference 2001 (VMV-01), 439–446.

WEISKOPF, D., ERLEBACHER, G., HOPF, M., AND ERTL, T. 2002.
Hardware-Accelerated Lagrangian-Eulerian Texture Advection for 2D
Flow Visualizations. In Proceedings of the Vision Modeling and Visual-
ization Conference 2002 (VMV-01), 439–446.

